We have to find the derivative of $$tan^{-1} \dfrac{cos x-sin x}{cos x+sin x}$$ with respect to $$x$$.
$$\dfrac{d}{dx} \left(tan^{-1} \dfrac{cos x-sin x}{cos x+sin x}\right)$$
Let $$ u=\dfrac{cos x-sin x}{cos x+sin x}, f=tan^{-1} (u)$$
Apply chain rule $$\dfrac{df(u)}{dx}=\dfrac{df}{du} \cdot \dfrac{du}{dx}$$, we get
$$\dfrac{df(u)}{dx}=\dfrac{d}{du} (tan^{-1}(u)) \cdot \dfrac{d}{dx} \left(\dfrac{cos x-sin x}{cos x+sin x}\right)$$
$$=\dfrac{1}{u^2+1} \cdot \dfrac{(cos x+sin x)(-sin x-cos x)-(cos x-sin x)(-sin x+cos x)}{(cos x+sin x)^2}$$
$$=\dfrac{1}{u^2+1} \cdot \dfrac{-(cos x+sin x)^2-(cos x-sin x)^2}{(cos x+sin x)^2}$$
$$=\dfrac{1}{u^2+1} \cdot \dfrac{-cos^2 x-sin^2 x-2cos x \: sin x-cos^2 x-sin^2 x+2cos x \: sin x}{cos^2 x+sin^2 x+2sin x\: cos x}$$
$$=\dfrac{1}{u^2+1} \cdot \dfrac{-2cos^2 x-2sin^2 x}{1+2sin x\: cos x}$$
$$=\dfrac{1}{u^2+1} \cdot \dfrac{-2(cos^2 x+sin^2 x)}{1+2sin x\: cos x}$$
$$=\dfrac{1}{u^2+1} \cdot \dfrac{-2}{1+2sin x\: cos x}$$
Substitute $$u=\dfrac{cos x-sin x}{cos x+sin x}$$ we get
$$=\dfrac{1}{\left(\dfrac{cos x-sin x}{cos x+sin x}\right)^2+1} \cdot \dfrac{-2}{1+2sin x\: cos x}$$
$$=\dfrac{(cos x+sin x)^2}{(cos x-sin x)^2+(cosx+sin x)^2} \cdot \dfrac{-2}{1+2sin x\: cos x}$$
$$=\dfrac{cos^2 x+sin^2 x+2cos x sin x}{cos^2 x+sin^2 x-2cos x sin x+cos^2x+sin^2 x+2sin x cos x} \cdot \dfrac{-2}{1+2sin x\: cos x}$$
$$=\dfrac{1+2cos x sin x}{1-2cos x sin x+1+2sin x cos x} \cdot \dfrac{-2}{1+2sin x\: cos x}$$
$$=\dfrac{1+2 sin x cos x}{2} \cdot \dfrac{-2}{1+2sin x\: cos x}$$
$$=-1$$
$$\dfrac{d}{dx} \left(tan^{-1} \dfrac{cos x-sin x}{cos x+sin x}\right)=-1$$