Self Studies

Continuity and Differentiability Test - 38

Result Self Studies

Continuity and Differentiability Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The derivative of $$cosec^{-1} \left( \dfrac{1}{2x^2 - 1} \right )$$ with respect to $$\sqrt{1 - x^2}$$ at $$x = \dfrac{1}{2}$$ is
    Solution
    Let $$ y= \dfrac{1}{2x^{2}-1} $$

    $$\dfrac{\mathrm{d} \csc ^{-1}y}{\mathrm{d} \sqrt{1-x^{2}}}= \dfrac{\mathrm{d}\csc ^{-1}y }{\mathrm{d} x}\times \dfrac{\mathrm{d} x}{\mathrm{d}\sqrt{1-x^{2}}}$$

    $$ \dfrac{\mathrm{d}\csc ^{-1}y }{\mathrm{d} x}= \dfrac{-1}{\left | y \right |\sqrt{y^{2}-1}} $$

    $$ \dfrac{\mathrm{d}\csc ^{-1}y }{\mathrm{d} x}= \dfrac{-1}{\left | \frac{1}{2x^{2}-1} \right |\sqrt{\left ( \dfrac{1}{2x^{2}-1} \right )^{2}-1}}\times (-1)\left ( 2x^{2}-1 \right )^{2}4x $$
      
    $$ \dfrac{\mathrm{d}\csc ^{-1}y }{\mathrm{d} x}=\dfrac{2}{\sqrt{1-x^{2}}} $$

    $$ \dfrac{\mathrm{d} x}{\mathrm{d}\sqrt{1-x^{2}}}= -\dfrac{\sqrt{1-x^{2}}}{x}$$

    $$ \dfrac{\mathrm{d} \csc ^{-1}y}{\mathrm{d} \sqrt{1-x^{2}}}=-\dfrac{2}{x} $$

    When $$x= \dfrac{1}{2} $$

    $$ \dfrac{\mathrm{d} \csc ^{-1}y}{\mathrm{d} \sqrt{1-x^{2}}}=-4 $$
  • Question 2
    1 / -0
    $$x$$$$1$$$$2$$$$3$$$$4$$$$5$$
    $$f(x)$$$$4$$$$3$$$$7$$$$1$$$$3$$
    The function f is continuous on the closed interval $$[1, 5]$$ and values of the function are shown in the table above. If the values in the table are used to calculate a trapezoidal sum, the approximate value of $$\int_{1}^{5}f(x)dx$$ is
    Solution

  • Question 3
    1 / -0
    The derivative of $$\displaystyle (\tan x)^{x}$$ is equal to-
    Solution
    $$\displaystyle y=(\tan x)^{x}$$

    $$\Rightarrow \log y = x \log \tan x$$ 

    $$\displaystyle \Rightarrow \frac{1}{y}\frac{dy}{dx}=\log { \tan { x }  } +\frac { x\times 1 }{ \tan  x } \times \sec ^{ 2 } x$$

    $$\Rightarrow \displaystyle \frac{dy}{dx}=y\left [ \log \tan x+x\sec x \, cosec x \right ]$$

    $$\Rightarrow \displaystyle \frac{dy}{dx}=(\tan x)^{x}\left [ \log \tan x+x\sec x\, cosec x \right ]$$
  • Question 4
    1 / -0
    If $$f(x) = \left\{\begin{matrix}\dfrac {1 - \sin x}{(\pi - 2x)^{2}} \cdot \dfrac {\log \sin x}{\log (1 + \pi^{2} - 4\pi x + 4x^{2})},& x\neq \dfrac {\pi}{2}\\ k, & x = \dfrac {\pi}{2}\end{matrix}\right.$$ is continuous at $$x = \dfrac {\pi}{2}$$, then $$k$$ is equal to
    Solution
    For $$f(x)$$ is continuous at $$x = \dfrac {\pi}{2}$$, we must have
    $$\displaystyle \lim_{x\rightarrow \frac {\pi}{2}} f(x) = f\left (\dfrac {\pi}{2}\right )$$
    $$\Rightarrow \displaystyle \lim_{x\rightarrow \frac {\pi}{2}} \dfrac {1 - \sin x}{(\pi - 2x)^{2}} \cdot \dfrac {\log \sin x}{\log (1 + \pi^{2} - 4\pi x + 4x^{2})} = k$$
    $$\Rightarrow \displaystyle \lim_{h\rightarrow 0} \dfrac {1 - \cos h}{4h^{2}} \cdot \dfrac {\log \cos h}{\log (1 + 4h^{2})} = k$$
    $$\Rightarrow \displaystyle \lim_{h\rightarrow 0} \dfrac {1 - \cos h}{4h^{2}} \times \dfrac {\log(1 + \cos h - 1)}{\cos h - 1} \times \dfrac {4h^{2}}{\log (1 + 4h^{2})} \times \dfrac {\cos h - 1}{4h^{2}} = k$$
    $$\Rightarrow -\displaystyle \lim_{h\rightarrow 0} \left (\dfrac {1 - \cos h}{4h^{2}}\right )^{2} \times \dfrac {\log (1 + (\cos h - 1))}{\cos h - 1}\times \dfrac {4h^{2}}{\log (1 + 4h^{2})} = k$$
    $$\Rightarrow -\dfrac {1}{64} \displaystyle \lim_{h\rightarrow 0} \left (\dfrac {\sin (\frac{h}{2})}{\frac{h}{2}}\right )^{4} \dfrac {\log (1 + (\cos h - 1))}{\cos h - 1}\times \dfrac {4h^{2}}{\log (1 + 4h^{2})} = k$$
    $$\Rightarrow -\dfrac {1}{64} = k\Rightarrow k = -\dfrac {1}{64}$$.
  • Question 5
    1 / -0
    Find derivative of $$\tan^{-1}\dfrac{\cos x-\sin x}{\cos x+\sin x}$$ w.r.t. $$x$$.
    Solution
    We have to find the derivative of $$tan^{-1} \dfrac{cos x-sin x}{cos x+sin x}$$ with respect to $$x$$.

    $$\dfrac{d}{dx} \left(tan^{-1} \dfrac{cos x-sin x}{cos x+sin x}\right)$$

    Let $$ u=\dfrac{cos x-sin x}{cos x+sin x}, f=tan^{-1} (u)$$

    Apply chain rule $$\dfrac{df(u)}{dx}=\dfrac{df}{du} \cdot \dfrac{du}{dx}$$, we get

    $$\dfrac{df(u)}{dx}=\dfrac{d}{du} (tan^{-1}(u)) \cdot \dfrac{d}{dx} \left(\dfrac{cos x-sin x}{cos x+sin x}\right)$$

                 $$=\dfrac{1}{u^2+1} \cdot \dfrac{(cos x+sin x)(-sin x-cos x)-(cos x-sin x)(-sin x+cos x)}{(cos x+sin x)^2}$$

                 $$=\dfrac{1}{u^2+1} \cdot \dfrac{-(cos x+sin x)^2-(cos x-sin x)^2}{(cos x+sin x)^2}$$

                 $$=\dfrac{1}{u^2+1} \cdot \dfrac{-cos^2 x-sin^2 x-2cos x \: sin x-cos^2 x-sin^2 x+2cos x \: sin x}{cos^2 x+sin^2 x+2sin x\: cos x}$$

                 $$=\dfrac{1}{u^2+1} \cdot \dfrac{-2cos^2 x-2sin^2 x}{1+2sin x\: cos x}$$

                 $$=\dfrac{1}{u^2+1} \cdot \dfrac{-2(cos^2 x+sin^2 x)}{1+2sin x\: cos x}$$

                 $$=\dfrac{1}{u^2+1} \cdot \dfrac{-2}{1+2sin x\: cos x}$$

    Substitute $$u=\dfrac{cos x-sin x}{cos x+sin x}$$ we get

                 $$=\dfrac{1}{\left(\dfrac{cos x-sin x}{cos x+sin x}\right)^2+1} \cdot \dfrac{-2}{1+2sin x\: cos x}$$

                 $$=\dfrac{(cos x+sin x)^2}{(cos x-sin x)^2+(cosx+sin x)^2} \cdot \dfrac{-2}{1+2sin x\: cos x}$$

                 $$=\dfrac{cos^2 x+sin^2 x+2cos x sin x}{cos^2 x+sin^2 x-2cos x sin x+cos^2x+sin^2 x+2sin x cos x} \cdot \dfrac{-2}{1+2sin x\: cos x}$$

                 $$=\dfrac{1+2cos x sin x}{1-2cos x sin x+1+2sin x cos x} \cdot \dfrac{-2}{1+2sin x\: cos x}$$

                 $$=\dfrac{1+2 sin x cos x}{2} \cdot \dfrac{-2}{1+2sin x\: cos x}$$

                 $$=-1$$

    $$\dfrac{d}{dx} \left(tan^{-1} \dfrac{cos x-sin x}{cos x+sin x}\right)=-1$$

  • Question 6
    1 / -0
    If $$y=\sqrt { \left( a-x \right) \left( x-b \right)  } -\left( a-b \right) \tan ^{ -1 }{ \sqrt { \dfrac { a-x }{ x-b }  }  } $$, then $$\dfrac { dy }{ dx } $$ is equal to
    Solution
    Let $$x=a\cos ^{ 2 }{ \theta  } +b\sin ^{ 2 }{ \theta  } $$
    Here $$ a-x=a-a\cos ^{ 2 }{ \theta  } -b\sin ^{ 2 }{ \theta  } =\left( a-b \right) \sin ^{ 2 }{ \theta  } $$
    and $$x-b=a\cos ^{ 2 }{ \theta  } -b\sin ^{ 2 }{ \theta  } -b=\left( a-b \right) \cos ^{ 2 }{ \theta  } $$
    and $$ y=\left( a-b \right) \sin { \theta  } \cdot \cos { \theta  } -\left( a-b \right) \tan ^{ -1 }{ \tan { \theta  }  } $$
    $$=\dfrac { a-b }{ 2 } \sin { 2\theta  } -\left( a-b \right) \theta $$
    Therefore, $$ \dfrac { dy }{ dx } =\dfrac { { dy }/{ d\theta  } }{ { dx }/{ d\theta  } } =\dfrac { \left( a-b \right) \cos { 2\theta  } -\left( a-b \right)  }{ \left( b-a \right) \sin { 2\theta  }  } $$
    $$=\dfrac { 1-\cos { 2\theta  }  }{ \sin { \theta  }  } =\tan { \theta  } =\sqrt { \dfrac { a-x }{ x-b }  } $$
  • Question 7
    1 / -0
    Let $$f(x) = \left\{\begin{matrix}2a - x, &if\ -a < x < a \\ 3x - 2a, &if\ a \leq x \end{matrix}\right.$$. Then, which of the following is true?
    Solution
    Given, $$f(x) = \left\{\begin{matrix}2a - x, &if\ -a < x < a \\ 3x - 2a, &if\ a \leq x \end{matrix}\right.$$
    At $$x = a$$,
    $$LHL = \displaystyle \lim_{x\rightarrow a^{-}} f(x) = \displaystyle \lim_{x\rightarrow a} (2a - x)$$
    $$= 2a - a = a\ RHL$$
    $$= \displaystyle \lim_{x\rightarrow a^{+}} f(x) = \displaystyle \lim_{x\rightarrow a}(3x - 2a)$$
    $$= 3(a) - 2a = a$$
    and $$f(a) = 3(a) - 2a = a$$
    $$\therefore LHL = RHL = f(a)$$
    Hence, it is continuous at $$x = a$$
    Again, at $$x = a$$
    $$LHD = \displaystyle \lim_{h\rightarrow 0}\dfrac {f(a - h) - f(a)}{-h}$$
    $$= \displaystyle \lim_{h\rightarrow 0} = \dfrac {2a - (a - h) - a}{-h} =-1$$
    and $$RHD = \displaystyle \lim_{h\rightarrow 0} \dfrac {f(a + h) - f(a)}{h}$$
    $$= \displaystyle \lim_{h\rightarrow 0} \dfrac {3(a + h) - 2a - a}{h} = 3$$
    $$\therefore LHD \neq RHD$$
    Hence, it is not differentiable at $$x = a$$.
  • Question 8
    1 / -0
    If $$x = A\cos 4t + B\sin 4t$$, then $$\dfrac {d^{2}x}{dt^{2}}$$ is equal to
    Solution
    Given, $$x = A\cos 4t + B\sin 4t$$
    On differentiating w.r.t., $$t$$, we get
    $$\dfrac {dx}{dt} = -4A\sin 4t + 4B\cos 4t$$
    Again, differentiating w.r.t. $$t$$, we get
    $$\dfrac {d^{2}x}{dt^{2}} = -6A\cos 4t - 16B \sin 4t$$
    $$\Rightarrow \dfrac {d^{2}x}{dt^{2}} = -16(x)$$.
  • Question 9
    1 / -0
    The function $$f(x)=\left[ { x }^{ 2 } \right] +{ \left[ -x \right]  }^{ 2 }$$, where $$[]$$ denotes the greatest integer function is
    Solution
    We have
    $$\displaystyle\lim _{ x\rightarrow { 2 }^{ - } }{ f(x) } =\lim _{ h\rightarrow 0 }{ f(2-h) } =\lim _{ h\rightarrow 0 }{ { (2-h) }^{ 2 }+{ (-2+h) }^{ 2 } } $$
    $$\displaystyle\Rightarrow \lim _{ x\rightarrow { 2 }^{ - } }{ f(x) } =3+{ (-2) }^{ 2 }=7$$
    $$\displaystyle\lim _{ x\rightarrow { 2 }^{ + } }{ f(x) } =\lim _{ h\rightarrow 0 }{ f(2+h) } =\lim _{ h\rightarrow 0 }{ { (2+h) }^{ 2 }+{ (-2-h) }^{ 2 } } $$
    $$\displaystyle\lim _{ x\rightarrow { 2 }^{ + } }{ f(x) } =4+{ (-3) }^{ 2 }=13\quad $$
    clearly, $$\displaystyle\lim _{ x\rightarrow { 2 }^{ - } }{ f(x) } \neq \lim _{ x\rightarrow { 2 }^{ + } }{ f(x) } $$
    so, $$f(x)$$ is discontinuous at $$x=2$$
    Consequently, it is not differentiable at $$x=2$$
  • Question 10
    1 / -0
    Find the derivative of $$\dfrac{\tan^{-1}x}{1+\tan^{-1}x}$$ w.r.t. $$\tan^{-1}x$$.
    Solution
    let $$ \tan^{-1}x = t$$ and $$\dfrac{\tan^{-1}x}{1+\tan^{-1}x} = y$$

    then,
    $$\dfrac{dy}{dt} = \dfrac{d}{dt} \dfrac{t}{1+t} $$

    $$\dfrac{dy}{dt} = \dfrac{(1+t)1 - t(1)}{(1+t)^2}$$

    $$\dfrac{dy}{dt} = \dfrac{1}{(1+t)^2}$$

    $$= \dfrac{1}{(1+\tan^{-1}x)^2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now