Self Studies

Continuity and Differentiability Test - 41

Result Self Studies

Continuity and Differentiability Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given that $$f(x)$$ is a differentiable function of $$x$$ and that $$f\left( x \right).f\left( y \right) = f\left( x \right) + f\left( y \right) + f\left( {xy} \right) - 2$$ and that $$f\left( 2 \right) = 5.$$ Then $$f'\left( 3 \right)$$ is equal to
    Solution

  • Question 2
    1 / -0
    If $$y^{y^{y^{....{^\infty}}}} = \log_e(x+\log_e(x+....))$$, then $$\dfrac{dy}{dx}$$ at $$(x= e^2-2, y= \sqrt2)$$ is
    Solution

  • Question 3
    1 / -0
    Let $$y=x^{x^x}$$, then differentiate $$y$$ w.r.t $$x$$.
    Solution
    $$y=x^{x^x}$$
    diffrentiate it w.r.t.$$x$$
    $$\dfrac{dy}{dx}=(e^{lnx^{x^x}})^{'}$$
    $$\dfrac{dy}{dx}=(e^{x^x lnx})^{'}$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})^{'}$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})(e^{xlnx}lnx)^{'}$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})(e^{xlnx}(xlnx)^{'}ln x$$+$$\dfrac{e^{xlnx}}{x})$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})(e^{xlnx}(xlnx)^{'}ln x$$+$$\dfrac{e^{xlnx}}{x})$$
    $$\dfrac{dy}{dx}=(e^{e^{x lnx}lnx)})(e^{xlnx}(lnx+\dfrac{x}{x})ln x$$+$$\frac{e^{xlnx}}{x}$$
    $$\dfrac{dy}{dx}=x^{x^{x}}$$$$(x^x(lnx+1)lnx+\dfrac{x^x}{x}$$
    $$\dfrac{dy}{dx}=x^{x^{x}}$$$$(x^x)(\dfrac{1}{x}+lnx+(lnx)^2)$$
    so option C is correct.
  • Question 4
    1 / -0
    If $$x = 2\left( {\theta  + \sin \theta } \right)and\,y = 2\left( {1 - \cos \theta } \right),then\;value\;of\frac{{dy}}{{dx}}\;is\;$$
  • Question 5
    1 / -0
    If $$f\left( x \right) = x + \left| x \right| + {\kern 1pt} \,\cos \left( {\left[ {{\pi ^2}} \right]x} \right)\,\,and\,\,g\left( x \right) = \,\sin \,x\,where\,\left[ . \right]$$ denotes the greatest integer function) then :-
    $$(1)$$ $$f\left( x \right) + g\left( x \right)$$ is discontinuous
    $$(2)$$$$f\left( x \right) + g\left( x \right)$$ is differentiable everywhere  
    $$(3)$$ $$f\left( x \right) \times g\left( x \right)$$  is differentiable everywhere
     $$(4)$$ $$f\left( x \right) \times g\left( x \right)$$ is countimuos but not diffrentiable  at $$x=0$$ 
  • Question 6
    1 / -0
    If $$f\left( x \right) = \left\{ \begin{array}{l}\frac{{1 - \left| x \right|}}{{1 + x}},{\rm{ }}x \ne  - 1\\1,{\rm{          }}x =  - 1{\rm{     }}\end{array} \right.$$   then $$f\left( {\left[ {2x} \right]} \right),$$ where $$\left[ {} \right]$$ represents the greatest integer function , is 
    Solution

  • Question 7
    1 / -0
    if $$y^{2}=ax+bx+c$$, then $$ y^{3} \dfrac {d^{2}y}{dx^{2}}$$ is
    Solution
    Given $$y^2=ax+bx=x$$
    differentiate w.r.t. to x
    $$2y\cdot \dfrac{dy}{dx}=a+b$$ …….$$(1)$$
    Again differentiate wrt to x
    $$2\left(\dfrac{dy}{dx}\right)^2+2y\cdot\dfrac{d^2y}{dx^2}=0$$
    $$\left(\dfrac{dy}{dx}\right)^2+y\dfrac{d^2y}{dx^2}=0$$
    $$y\dfrac{d^2y}{dx^2}=-\left(\dfrac{dy}{dx}\right)^2$$
    Multiplying both side by $$y^2$$
    $$y^3\dfrac{d^2y}{dx^2}=-y^2\left(\dfrac{dy}{dx}\right)^2$$
    From equation $$(1)$$
    $$y^3\dfrac{d^2y}{dx^2}=-y^2\left(\dfrac{a+b}{2y}\right)^2$$
    $$y^3\dfrac{d^2y}{dx^2}=-\dfrac{(a+b)^2}{4}$$
    So, $$y^3\dfrac{d^2y}{dx^2}$$ is a constant.
    $$\therefore$$ Option A is correct.

  • Question 8
    1 / -0
     If $$f:\left[ {0,1} \right] \to \left[ {0,1} \right]$$ be definded by f(x) =\begin{cases} x,\quad \quad \quad \quad \quad \quad if\quad x\quad is\quad rational\quad  \\ 1-x,\quad \quad \quad \quad if\quad x\quad is\quad irrational\quad \quad \quad \quad \quad  \end{cases} then $$\left( {f \circ f} \right)x$$ ______________.
    Solution

  • Question 9
    1 / -0
    If $$\left( \frac { 1-x }{ 1+x }  \right) =x$$ and $$g\left( x \right) =\int { f\left( x \right) } dx$$ then 
  • Question 10
    1 / -0
    If $$f(x)=\begin{cases} \dfrac { 1-\sqrt { 2 } \sin { x }  }{ \pi -4x } ,\quad \quad ifx\neq \dfrac { \pi  }{ 4 }  \\ a\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ,\quad \quad ifx=\dfrac { \pi  }{ 4 }  \end{cases}$$ is continous at $$x=\dfrac {\pi}{4}$$ then $$a=$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now