Self Studies

Continuity and Differentiability Test - 46

Result Self Studies

Continuity and Differentiability Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\frac { d }{ dx } (\sin ^{ -1 }{ \{ \frac { \sqrt { 1+x } +\sqrt { 1-x }  }{ 2 } \}  } )=$$
    Solution

  • Question 2
    1 / -0
    $$dx\left\{ sin{  }^{ -1 }(\frac { 5x+12\sqrt { 1-x{  }^{ 2 } }  }{ 13 } ) \right\} =$$
  • Question 3
    1 / -0
    If $$y=\cos ^{ -1 }{ (\frac { x-{ x }^{ -1 } }{ x+{ x }^{ -1 } } ) } \quad then\quad \frac { dy }{ dx } =$$
    Solution

  • Question 4
    1 / -0
    The number of point at which the function F(x)= max$$\left\{ a-x,a+x,b \right\} -\infty <x<\infty ,0<a<b$$ cannot be differentiable is 
    Solution

  • Question 5
    1 / -0
    If $$x=\theta-\frac{1}{\theta},y=\theta+\frac{1}{\theta}$$ then $$\dfrac{dy}{dx}$$=
    Solution
    $$x=\theta-\dfrac{1}{\theta}$$
    $$\dfrac{dx}{d\theta}=1-\left(\dfrac{-1}{{\theta}^{2}}\right)$$
    $$\therefore \dfrac{dx}{d\theta}=1+\dfrac{1}{{\theta}^{2}}$$
    $$y=\theta+\dfrac{1}{\theta}$$
    $$\dfrac{dy}{d\theta}=1+\left(\dfrac{-1}{{\theta}^{2}}\right)$$
    $$\therefore \dfrac{dy}{d\theta}=1-\dfrac{1}{{\theta}^{2}}$$
    $$\therefore \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{d\theta}}{\dfrac{dx}{d\theta}}=\dfrac{1-\dfrac{1}{{\theta}^{2}}}{1+\dfrac{1}{{\theta}^{2}}}$$
    We have $$x=\theta-\dfrac{1}{\theta}$$ and $$y=\theta+\dfrac{1}{\theta}$$
    $$\Rightarrow xy={\theta}^{2}-\dfrac{1}{{\theta}^{2}}$$
    and $${y}^{2}={\left(\theta+\dfrac{1}{\theta}\right)}^{2}$$
    $$\Rightarrow {y}^{2}={\theta}^{2}+\dfrac{1}{{\theta}^{2}}-2\theta\dfrac{1}{\theta}$$
    $$\Rightarrow {y}^{2}={\theta}^{2}+\dfrac{1}{{\theta}^{2}}-2$$
    $$\Rightarrow {y}^{2}+2={\theta}^{2}+\dfrac{1}{{\theta}^{2}}$$
    $$\therefore \dfrac{dy}{dx}=\dfrac{1-\dfrac{1}{{\theta}^{2}}}{1+\dfrac{1}{{\theta}^{2}}}$$
    $$=\dfrac{xy}{{y}^{2}+2}$$

  • Question 6
    1 / -0
    Let fbe twice differentiable function such that $${ g }^{ 1 }\left( x \right) =-f\left( x \right) and\quad \quad \quad \quad \quad { f }^{ 1 }\left( x \right) =g\left( x \right) ,\\ h(x)={ \left( f\left( x \right)  \right)  }^{ 2 }+{ \left( g\left( x \right)  \right)  }^{ 2 }.\quad Ifh(5)=11,\quad thenh(10)\quad is$$
    Solution

  • Question 7
    1 / -0
    If $$y=\tan ^{ -1 }{ [x+\sqrt { 1+{ x }^{ 2 } } ] } $$ then $$\frac { dy }{ dx } =$$
    Solution

  • Question 8
    1 / -0
    $$\frac { d[\sec ^{ -1 }{ (\sin { x } +{ x }^{ 2 }) } ] }{ dx } =$$
  • Question 9
    1 / -0
    If $$y={ tan }^{ -1 }\left( \dfrac { 1-{ cos }^{ 2 }x }{ 1+{ cos }^{ 2 } }  \right) ,$$, then $$\dfrac { dy }{ xy } =$$
    Solution

  • Question 10
    1 / -0
    Solve $$\frac{d\tan ^{-1}}{dx} (\frac{5x + 1}{3 - x - 6x^2}) = $$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now