Self Studies

Continuity and ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$f(x)={ sin }^{ -1 }\left[ \dfrac { 2x }{ 1+{ x }^{ 2 } }  \right] $$,then $$f(x)$$ is differentiable on 

  • Question 2
    1 / -0

    f(X)=|x|+|x-1| is continuous at 

  • Question 3
    1 / -0

    If $$f\left( x \right) = {\left| x \right|^{\left| {\sin x} \right|}}$$, then $${f'}\left( { - \dfrac{\pi }{4}} \right)$$ is equals

  • Question 4
    1 / -0

    f(x) is diffrentiable function and (f(x). g(x)) is differentiable a x=a , then 

  • Question 5
    1 / -0

    The order of the differential equation of all circles whose radius is $$4$$, is?

  • Question 6
    1 / -0

    Give that f(x) =xg(x) /$$ \left | x \right | $$ , g(0) = 0 and f(x) is continous at x=0. Then the value of f' (0)

  • Question 7
    1 / -0

    If $$f(x) =  \left\{\begin{matrix} \dfrac{x\log \cos x}{\log(1+x^2)}, & x \neq 0\\ 0, & x=0\end{matrix}\right.$$ then

  • Question 8
    1 / -0

    Let $$f:(-1,1)\rightarrow R$$ be a differentiable function satisfying 
                 $$(f'(x))^4=16(f(x))^2$$ for all $$x\in (-1,1)$$
       $$f(0)=0$$
    The number of such functions is 

  • Question 9
    1 / -0

    Let $$f(x)$$ be a function satisfying $$f(x+y)  = f(x)+f(y)$$ and $$f(x) = xg(x)$$ $$\forall x, ~y \in$$ R, where $$g(x)$$ is a continuous function then, which of the following is true?

  • Question 10
    1 / -0

    If the function $$f:[0,8] \rightarrow R$$ is differentiable, then for$$0<a, b<2, \int_{0}^{8} f(t) d t$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now