Given:$${\left({f}^{\prime}{\left(x\right)}\right)}^{4}=16{\left(f{\left(x\right)}\right)}^{2}$$ for all $$x\in\,\left(–1 , 1\right)$$
$$f\left(0\right)=0$$
$$\Rightarrow\, {\left({f}^{\prime}{\left(x\right)}\right)}^{2}=\pm\,4f\left(x\right)$$
$$\Rightarrow\, {f}^{\prime}{\left(x\right)}=\pm\,2\sqrt{\pm\,f\left(x\right)}$$
$$(i)$$Case $$1$$
$${f}^{\prime}{\left(x\right)}=2\sqrt{\pm\,f\left(x\right)}$$
$$\displaystyle\int{\dfrac{d\left(f\left(x\right)\right)}{f\left(x\right)}}=\displaystyle\int{2\,dx}$$
$$\Rightarrow\,2\sqrt{f\left(x\right)}=2x+c$$
$$\Rightarrow\,f\left(0\right)=0\Rightarrow\,c=0$$
$$\Rightarrow\,\sqrt{f\left(x\right)}=x$$
$$\Rightarrow\,x\ge 0$$
$$f\left(x\right)={x}^{2},\,\,0\le x<1$$
$$(ii)$$Case $$2$$
$${f}^{\prime}{\left(x\right)}=-2\sqrt{f\left(x\right)}$$
$$\Rightarrow\,\sqrt{f\left(x\right)}=-x\Rightarrow\,x\le 0$$
$$f\left(x\right)={x}^{2};\,\,\,-1<x\le 0$$
$$(iii)$$Case $$3$$
$${f}^{\prime}{\left(x\right)}=2\sqrt{-f\left(x\right)}$$
$$\sqrt{-f\left(x\right)}=x$$
$$-f\left(x\right)={x}^{2}$$
$$f\left(x\right)=-{x}^{2};\,\,\,0\le x< 1$$
$$(iv)$$Case $$4$$
$${f}^{\prime}{\left(x\right)}=-2\sqrt{-f\left(x\right)}$$
$$\sqrt{-f\left(x\right)}=-x$$
$$f\left(x\right)=-{x}^{2};\,\,\,-1< x\le 0$$
$$(v)$$Also, one singular solution of given differential equation is
$$f\left(x\right)=0,\,\,-1<x<1$$
Hence, there are more than $$4$$ function possible
$${f}_{1}\left( x \right) =\begin{cases} {x}^{2};0\le x< 1 \\ {-x}^{2}; -1<x<0 \end{cases}$$
$${f}_{2}\left( x \right) =\begin{cases} -{x}^{2};0\le x< 1 \\ {x}^{2}; -1<x<0 \end{cases}$$
$${f}_{3}\left( x \right) = {x}^{2},\,-1<x<1$$
$${f}_{4}\left( x \right) =-{x}^{2},\,-1<x<1$$
$${f}_{5}\left( x \right) =0,\,-1<x<1$$...
Hence there are more than $$4$$ solutions