Self Studies

Continuity and Differentiability Test - 49

Result Self Studies

Continuity and Differentiability Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)={ sin }^{ -1 }\left[ \dfrac { 2x }{ 1+{ x }^{ 2 } }  \right] $$,then $$f(x)$$ is differentiable on 
    Solution

  • Question 2
    1 / -0
    f(X)=|x|+|x-1| is continuous at 
    Solution
    $$\textbf{Step-1: Finding values of}$$ $$\mathbf{f(x)}$$
                    $$f(x)=|x|+|x-1|$$
                    $$f(x)=-x-|x-1|$$             $$\text{at}$$ $$x\leq{0}$$
                             $$=x-(x-1)$$                $$\text{at}$$ $$0\leq{x}<1$$
                             $$=x+(x-1)$$                $$\text{at}$$ $$x\geq{1}$$
                    $$\text{Hence, we get}$$
                    $$f(x)=1-2x$$             $$\text{at}$$ $$x\leq{0}$$
                             $$=1$$                       $$\text{at}$$ $$0\leq{x}<1$$
                             $$=2x-1$$             $$\text{at}$$ $$x\geq{1}$$
    $$\textbf{Step-2: Finding limits of the function at constraint values}$$
                     $$\text{At}$$ $$x=0,$$
                     $$\lim_{x\to 0} f(x)=1$$
                     $$\text{Hence,}$$ $$f(x)$$ $$\text{is continuous at}$$ $$x=0$$
                     $$\text{At}$$ $$x=1,$$
                     $$\lim_{x\to 1} f(x)=1$$
                     $$\text{Hence,}$$ $$f(x)$$ $$\text{is continuous at}$$ $$x=1$$
                     $$\text{Hence,}$$ $$f(x)$$ $$\text{is continuous everywhere}$$

    $$\textbf{Hence,Correct option is (C)}$$
  • Question 3
    1 / -0
    If $$f\left( x \right) = {\left| x \right|^{\left| {\sin x} \right|}}$$, then $${f'}\left( { - \dfrac{\pi }{4}} \right)$$ is equals
  • Question 4
    1 / -0
    f(x) is diffrentiable function and (f(x). g(x)) is differentiable a x=a , then 
  • Question 5
    1 / -0
    The order of the differential equation of all circles whose radius is $$4$$, is?
    Solution
    Circle with radius $$4$$ is represented as follows:-
    $$(x - h)^2 + (y - k)^2 = 4^2$$                  ..... $$(1)$$

    Differentiating w.r.t $$x$$
    $$2(x - h) + 2(y - k) \dfrac{dy}{dx} = 0$$

    $$\Rightarrow\ (x - h) + (y - k) \dfrac{dy}{dx} = 0$$           .....$$(2)$$

    Again differentiating w.r.t $$x$$
    $$1 + (y - k)\dfrac{d^2y}{dx^2} + \left (\dfrac{dy}{dx} \right )^2 = 0$$ 

    $$\Rightarrow\ (y - k) = \dfrac{-\left (\dfrac{dy}{dx} \right )^2 - 1}{\dfrac{d^2y}{dx^2}} $$             ....$$(3)$$

    From $$(2)$$ we get 
    $$\Rightarrow\ (x - h) = - (y - k) \dfrac{dy}{dx} $$ 

    $$\Rightarrow\ (x - h) = - \left \{ \dfrac{\left (\dfrac{dy}{dx} \right )^2 - 1 }{\dfrac{d^2y}{dx^2}} \right \} \dfrac{dy}{dx} $$

    $$\therefore\ (x - h) = \dfrac{\left (\dfrac{dy}{dx} \right )^3 + \left (\dfrac{dy}{dx} \right )}{\dfrac{d^2 y}{dx^2}} $$           .... $$(4)$$

    Substituting $$(4)$$ and $$(3)$$ in eq. $$(1)$$
    $$\left (\dfrac{\left(\dfrac{dy}{dx} \right )^3 + \dfrac{dy}{dx}}{\dfrac{d^2y}{dx^2}} \right )^2 + \left (\dfrac{-\left (\dfrac{dy}{dx} \right )^2 - 1}{\dfrac{d^2y}{dx^2}} \right )^2 = 4^2$$ 

    $$ \left [\left (\dfrac{dy}{dx} \right )^3 + \dfrac{dy}{dx} \right ]^2 + \left [\left (\dfrac{dy}{dx} \right )^2 + 1 \right ]^2 = 16 \dfrac{d^2y}{dx^2} $$ 

    $$\therefore$$ Order of D.E of circle whose radius is $$4$$ is $$2$$. 
  • Question 6
    1 / -0
    Give that f(x) =xg(x) /$$ \left | x \right | $$ , g(0) = 0 and f(x) is continous at x=0. Then the value of f' (0)
    Solution

  • Question 7
    1 / -0
    If $$f(x) =  \left\{\begin{matrix} \dfrac{x\log \cos x}{\log(1+x^2)}, & x \neq 0\\ 0, & x=0\end{matrix}\right.$$ then
    Solution

  • Question 8
    1 / -0
    Let $$f:(-1,1)\rightarrow R$$ be a differentiable function satisfying 
                 $$(f'(x))^4=16(f(x))^2$$ for all $$x\in (-1,1)$$
       $$f(0)=0$$
    The number of such functions is 
    Solution
    Given:$${\left({f}^{\prime}{\left(x\right)}\right)}^{4}=16{\left(f{\left(x\right)}\right)}^{2}$$   for all $$x\in\,\left(–1 , 1\right)$$
    $$f\left(0\right)=0$$
    $$\Rightarrow\, {\left({f}^{\prime}{\left(x\right)}\right)}^{2}=\pm\,4f\left(x\right)$$
    $$\Rightarrow\, {f}^{\prime}{\left(x\right)}=\pm\,2\sqrt{\pm\,f\left(x\right)}$$

    $$(i)$$Case $$1$$
    $${f}^{\prime}{\left(x\right)}=2\sqrt{\pm\,f\left(x\right)}$$
    $$\displaystyle\int{\dfrac{d\left(f\left(x\right)\right)}{f\left(x\right)}}=\displaystyle\int{2\,dx}$$
    $$\Rightarrow\,2\sqrt{f\left(x\right)}=2x+c$$
    $$\Rightarrow\,f\left(0\right)=0\Rightarrow\,c=0$$
    $$\Rightarrow\,\sqrt{f\left(x\right)}=x$$
    $$\Rightarrow\,x\ge 0$$
    $$f\left(x\right)={x}^{2},\,\,0\le x<1$$

    $$(ii)$$Case $$2$$
    $${f}^{\prime}{\left(x\right)}=-2\sqrt{f\left(x\right)}$$
    $$\Rightarrow\,\sqrt{f\left(x\right)}=-x\Rightarrow\,x\le 0$$
    $$f\left(x\right)={x}^{2};\,\,\,-1<x\le 0$$

    $$(iii)$$Case $$3$$
    $${f}^{\prime}{\left(x\right)}=2\sqrt{-f\left(x\right)}$$
    $$\sqrt{-f\left(x\right)}=x$$
    $$-f\left(x\right)={x}^{2}$$
    $$f\left(x\right)=-{x}^{2};\,\,\,0\le x< 1$$

    $$(iv)$$Case $$4$$
    $${f}^{\prime}{\left(x\right)}=-2\sqrt{-f\left(x\right)}$$
    $$\sqrt{-f\left(x\right)}=-x$$
    $$f\left(x\right)=-{x}^{2};\,\,\,-1< x\le 0$$

    $$(v)$$Also, one  singular solution of given differential equation is 
    $$f\left(x\right)=0,\,\,-1<x<1$$

    Hence, there are more than $$4$$ function possible 
    $${f}_{1}\left( x \right) =\begin{cases} {x}^{2};0\le x< 1 \\ {-x}^{2}; -1<x<0  \end{cases}$$
    $${f}_{2}\left( x \right) =\begin{cases} -{x}^{2};0\le x< 1 \\ {x}^{2}; -1<x<0  \end{cases}$$
    $${f}_{3}\left( x \right) = {x}^{2},\,-1<x<1$$
    $${f}_{4}\left( x \right) =-{x}^{2},\,-1<x<1$$  
    $${f}_{5}\left( x \right) =0,\,-1<x<1$$...
    Hence there are more than $$4$$ solutions
  • Question 9
    1 / -0
    Let $$f(x)$$ be a function satisfying $$f(x+y)  = f(x)+f(y)$$ and $$f(x) = xg(x)$$ $$\forall x, ~y \in$$ R, where $$g(x)$$ is a continuous function then, which of the following is true?
    Solution

  • Question 10
    1 / -0
    If the function $$f:[0,8] \rightarrow R$$ is differentiable, then for$$0<a, b<2, \int_{0}^{8} f(t) d t$$ is equal to
    Solution
    $$\operatorname{Let} g(x)=\int_{0}^{x^{3}} f(t) d t\\$$
    $$ \text { Now } \int_{0}^{8} f(t) d t=g(2) =\dfrac{g(2)-g(1)}{2-1}+\dfrac{g(1)-g(0)}{1-0} \\$$
    $$=g^{\prime}(\alpha)+g^{\prime}(\beta) \\$$
    $$=3\left[\alpha^{2} f\left(\alpha^{3}\right)+\beta^{2} f\left(\beta^{3}\right)\right] $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now