Self Studies

Application of Derivatives Test - 18

Result Self Studies

Application of Derivatives Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=kx^3 -9x^2 +9x+3$$ is increasing for every real number $$x$$, then
    Solution

  • Question 2
    1 / -0
    The tangent to the curve $$y=e^{kx}$$ at a point (0, 1) meets the x-axis at (q, 0) where $$a \epsilon  \left [ -2,-1 \right ]$$ then $$k \epsilon $$ 
    Solution

  • Question 3
    1 / -0
    A curve $$y=me^{mx}$$ where $$m > 0$$ intersects y-axis at a point $$P$$.
    What is the equation of tangent to the curve at $$P$$ ?
    Solution
    $$y = m {e}^{mx}, \; m > 0$$
    Substituting $$x = 0$$, we have
    $$y = m {e}^{m \cdot 0} = m$$
    Therefore,
    Slope $$= \cfrac{dy}{dx} = {m}^{2} {e}^{mx} = {m}^{2} {e}^{m \cdot 0} = {m}^{2}$$
    Therefore, equation of tangent at $$P$$ is given by-
    $$y - m = \cfrac{dy}{dx} \left( x - 0 \right)$$
    $$\Rightarrow y - m = {m}^{2} x$$
    $$\Rightarrow y = {m}^{2}x + m$$
  • Question 4
    1 / -0
    The function $$f(x)=x^3-27x+8$$ is increasing when
    Solution
    $$f'(x)=3x^2 -27=3(x^2 -9)=3(x+3)(x-3)$$

    $$\therefore \ f'(x)$$ is increasing when $$x < -3$$ or $$x > 3$$ i.e when $$|x| > 3$$.

    There are two factors in $$f'(x)$$. so we start with $$+ve$$ sign

    $$\therefore \ f(x)$$ is increasing when $$x < -3$$ or $$x > 3$$ i.e when $$|x| > 3$$.
  • Question 5
    1 / -0
    If the slope of the tangent to the curve $$xy+ ax+ by=0$$ at the point $$(1, 1) $$ on it is $$2$$, then values of $$a$$ and $$b$$ are
    Solution
    $$a+b +1=0$$
    $${xy}'+y+a+{b y}'=0$$
    $${y}'=\dfrac{-(y+a)}{(x+b )}$$
    $$-\dfrac{(a+1)}{(1+b )}=2$$
    $$2+2b +a+1=0$$
    $$2+2 b -b =0$$
    $$b =-2$$
    $$a=1$$
  • Question 6
    1 / -0
    If the slope of the tangent to the curve $$y = x^{3}$$ at a point on it is equal to the ordinate of the point then the point is
    Solution
    Differntiating the given equation 
    $$\dfrac{dy}{dx}=3x^{2}$$
    $$3a^{2}=a^{3}$$
    $$a=3$$
    $$(3,3^{3})$$
    $$(3,27)$$

  • Question 7
    1 / -0
    A stationary point of $$\mathrm{f}(\mathrm{x})=\sqrt{16 -\mathrm{x}^{2}}$$ is 
    Solution
    $$f(x)=\sqrt {16-x^2}$$
    $$y=\sqrt {16-x^2}$$
    On $$a$$ starting point $$\dfrac {dy}{dx}=0$$
    then $$\dfrac {dy}{dx}=\dfrac {1}{2} \dfrac {-2x}{\sqrt {16-x^2}}=\dfrac {x}{\sqrt {16-x^2}}=0$$
    At $$x=0$$
    Now $$y=\sqrt {16-0}$$
    $$=\sqrt {16}=4$$
    $$(0,4)\ $$ be starting point.
  • Question 8
    1 / -0
    The critical point of $$\mathrm{f}(\mathrm{x})=|2\mathrm{x}+7|$$ at $$\mathrm{x}=$$
    Solution
    $$f(x)=\mid 2x+7\mid$$
    So critical point is at $$x=\frac {-7}{2}$$

  • Question 9
    1 / -0
    The number of ciritical points of $$\displaystyle \mathrm{f}(\mathrm{x})=\frac{|x-1|}{x^{2}}$$ is
    Solution
    $$\displaystyle \mathrm{f}(\mathrm{x})=\dfrac{|x-1|}{x^{2}}$$ 
    $$\displaystyle f'(x)=\dfrac{x^{2}(x-1)-2x|x-1|^{2}}{x^{4}|x-1|}$$
    For maxima or minima,
    $$f'(x)=0$$
    $$\Rightarrow (x-1)(-x^2+2x)=0$$
    $$\Rightarrow x=0,1,2$$
    Hence, number of critical points of $$f(x)$$ are 3.
  • Question 10
    1 / -0
    A stationary value of $$\mathrm{f}(\mathrm{x})=\mathrm{x}(\ln \mathrm{x})^{2}$$ is
    Solution
    $$f(x)=x(\ln x)^2$$
    $$\Rightarrow f'(x)=(\ln x)^2+2x \dfrac {\ln x}{x}$$
    $$\Rightarrow f'(x)=\ln x(\ln(x)+2)$$
    For stationary points ,
    $$f'(x)=0$$ 
    $$\Rightarrow x=1$$ or $$e^{-2}$$
    $$f(1)=0$$
    and $$f(e^{-2})=4e^{-2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now