Self Studies

Application of ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$m$$ be the slope of a tangent to the curve $${ e }^{ 2y }=1+4{ x }^{ 2 }$$, then 

  • Question 2
    1 / -0

    The slope of the tangent to the curve $$y=x^{2}-x$$ at the point where the line $$y=2$$ cuts the curve in the first quadrant is

  • Question 3
    1 / -0

    The slope of the tangent to the locus $$y=\cos^{-1}\left ( \cos x \right )$$ at $$x=\displaystyle \frac{\pi }{4}$$ is

  • Question 4
    1 / -0

    If at each point of the curve $$y=x^{3}-ax^{2}+x+1$$ the tangent is inclined at an acute angle with the positive direction of the x-axis then

  • Question 5
    1 / -0

    The slope of the tangent to the curve $$y=\sqrt{4-x^{2}}$$ at the point where the ordinate and the abscissa are equal, is

  • Question 6
    1 / -0

    The equation of the curve is given by $$x=e^{t}\sin t$$, $$y=e^{t}\cos t$$. The inclination of the tangent to the curve at the point $$t=\displaystyle \frac{\pi }{4}$$ is

  • Question 7
    1 / -0

    The function $$\: f\left( x \right) =x^{ 3 }+\lambda x^{ 2 }+5x+\sin  2x$$ will be an invertible function if $$\: \lambda $$ belongs to

  • Question 8
    1 / -0

    The curve given by $$x+y=e^{xy}$$ has a tangent as the $$y$$-axis at the point

  • Question 9
    1 / -0

    Let $$\displaystyle f(x)=e\:^{x}\sin x$$ be the equation of a curve. If at $$\displaystyle x=a,0\leq a\leq 2\pi$$, the slope of the tangent is the maximum then the value of $$a$$ is 

  • Question 10
    1 / -0

    If $$m$$ be the slope of tangent to the curve $$e^{y}=1+x^{2}$$ then 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now