Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$F(x)=f(x)+f\left ( \dfrac{1}{x} \right )$$, where $$f(x)=\int_{l}^{x}\dfrac{logt}{l+t}dt$$. Then $$F(e)$$ equals

  • Question 2
    1 / -0

    For x > 0, let f(x) = $$\displaystyle \int_{1}^{x}{ \frac{log t}{1 + t}} dt $$. Then f(x) + f$$\displaystyle \left( \frac{1}{x} \right)$$ is equal to:

  • Question 3
    1 / -0

    The value of $$\displaystyle\int^{2\pi}_{0}\dfrac{x\sin^8x}{\sin^8x+\cos^8x}dx$$ is equal to?

  • Question 4
    1 / -0

    The integral $$\displaystyle\int^{{\pi}/{4}}_{{\pi}/{12}}\frac{8\cos 2x}{(\tan x+\cot x)^3}dx$$ equals?

  • Question 5
    1 / -0

    The value of $$\displaystyle \int_{0}^{1}\frac{8\log(1+\mathrm{x})}{1+\mathrm{x}^{2}}$$ dx is 

  • Question 6
    1 / -0

    If $$\displaystyle\int \dfrac{\cos x \, dx}{\sin^3x(1+\sin^6x)^{2/3}} = f(x)(1 + \sin^6x)^{1/\alpha} + c$$
    Where $$c$$ is a constant of integration, then $$\lambda f\left(\dfrac{\pi}{3}\right)$$ is equal to:

  • Question 7
    1 / -0

    The following integral $$\displaystyle \int_{\pi/4}^{\pi/2} (2 cosec  x)^{17}dx$$ is equal to

  • Question 8
    1 / -0

    Directions For Questions

    Given that for each $$\displaystyle a  \in (0, 1), \lim_{h \rightarrow 0^+} \int_h^{1-h} t^{-a} (1 -t)^{a-1}dt$$ exists. Let this limit be $$g(a)$$ 
    In addition, it is given that the function $$g(a)$$ is differentiable on $$(0, 1)$$
    Then answer the following question.

    ...view full instructions

    The value of $$g\displaystyle \left ( \frac{1}{2} \right )$$ is?

  • Question 9
    1 / -0

    The value of the integral $$\displaystyle \int_0^1 \dfrac{x^{\alpha}-1}{\log x}dx$$ is

  • Question 10
    1 / -0

    $$\int _{ 0 }^{ \pi  }{ \cfrac { xdx }{ 4\cos ^{ 2 }{ x } +9\sin ^{ 2 }{ x }  }  } =$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now