Self Studies

Integrals Test - 14

Result Self Studies

Integrals Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\int \dfrac {dx}{\sqrt {x^{10} - x^{2}}}; x > 1=$$ ______ $$+ C$$.
    Solution
    Let $$I=\displaystyle \int \dfrac {dx}{\sqrt {x^{10} - x^{2}}}$$

    $$=\displaystyle \int \dfrac {4x^{3}dx}{4x^{3} \times x \sqrt {x^{8} - 1}}$$

    $$=\displaystyle \int \dfrac {4x^{3} dx}{4x^{4}\sqrt {x^{8} - 1}}$$
    Put $$x^{4} = t$$
    $$\Rightarrow 4x^{3}dx = dt$$
    $$\displaystyle \int \dfrac {dt}{4t \sqrt {t^{2} - 1}} = \dfrac {1}{4}\sec^{-1} (x^{4}) + C$$.
  • Question 2
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{1}\frac{1}{1+x^{2}}dx$$
    Solution
    $$\displaystyle \int_{0}^{1}\frac{1}{1+x^2}dx$$

    $$\displaystyle \int \frac{1}{1+x^2}dx=\tan^{-1}x +c$$

    $$\displaystyle \int_{0}^{1}\frac{1}{1+x^2}dx=\tan^{-1}x+c\displaystyle \vert_{0}^{1}$$

    $$=(\tan^{-1}(1)+c)-(\tan^{-1}(0)+c)$$

    $$=\dfrac{\pi}{4}$$
  • Question 3
    1 / -0
    If $$A= \int_{0}^{1} x^{50}(2-x)^{50} dx, B= \int_{0}^{1}x^{50}(1-x)^{50}dx$$, which of the following is true?
    Solution
    Solution : - given,
    $$ \displaystyle \Rightarrow A = \int_{0}^{1}x^{50}(2-2x)^{50}dx$$  $$B = \int_{0}^{1}x^{50}(1-x)^{50}dx$$
    $$ \displaystyle \Rightarrow A = \int_{0}^{1} x^{50} \times 2^{50} (1-x)^{30}dx$$
    $$ \displaystyle  \Rightarrow A = 2^{50}\int_{0}^{1} x^{50} (1-x)^{50}dx $$
    $$\displaystyle  \Rightarrow A = 2^{50}B $$ proved

  • Question 4
    1 / -0
    The value of $$\int _{  }^{  }{ \cfrac { \log { x }  }{ { \left( x+1 \right)  }^{ 2 } }  } dx$$ is
    Solution
    $$\int \dfrac{lnx}{(x+1)^{2}}$$
    $$lnx\int \dfrac{dx}{(x+1)^{2}}-\int \dfrac{1}{x}\int \dfrac{dx}{(x+1)^{2}}$$
    $$lnx\dfrac{(x+1)^{-2+1}}{-2+1}-\int \dfrac{1}{x}\dfrac{(x+1)^{-2+1}}{-2+1}dx$$
    $$-\dfrac{lnx}{(x+1)}+\int \dfrac{1}{x}\dfrac{1}{(x+1)}dx$$
    $$-\dfrac{lnx}{(x+1)}+\int \dfrac{(x+1)-(x)}{x(x+1)}$$
    $$-\dfrac{lnx}{(x+1)}+\int \dfrac{1}{x}-\dfrac{1}{1+x}dx$$
    $$-\dfrac{lnx}{(1+x)}+lnx-ln(1+x)+C$$
  • Question 5
    1 / -0
    $$\displaystyle\int_0^{\pi /2} {\dfrac{{\sin x}}{{\sqrt {1 + {\mathop{\rm cosx}\nolimits} } }}} dx = $$
    Solution
    $$\displaystyle I= \int_{0}^{\pi /2}\frac{sin x}{\sqrt{1+cos x}}dx$$

    Let $$t= 1+ cos x \Rightarrow dt= -sin xdx$$

    limit of t : when $$x=0, t=2$$

    when $$x=\dfrac{\pi }{2}, t=1$$

    $$\displaystyle \therefore I=\int_{2}^{1}\frac{-dt}{\sqrt{t}}=\int_{1}^{2}\frac{dt}{\sqrt{t}}$$

    $$=2[\sqrt{t}]_{1}^{2}$$

    $$=2[\sqrt{2}-1]$$
  • Question 6
    1 / -0
    What is $$\displaystyle \int \dfrac{dx}{x(1 + ln x)^n}$$ equal to $$(n \neq 1)$$ ?
    Solution
    Given,

    $$\int \dfrac{1}{x\left(1+\ln \left(x\right)\right)^n}dx$$

    apply $$u=1+\ln \left(x\right)$$

    $$=\int \dfrac{1}{u^n}du$$

    $$=\int \:u^{-n}du$$

    $$=\dfrac{u^{-n+1}}{-n+1}$$

    $$=\dfrac{\left(1+\ln \left(x\right)\right)^{-n+1}}{-n+1}$$

    $$=\dfrac{\left(1+\ln \left(x\right)\right)^{-n+1}}{-n+1}+C$$
    $$-\dfrac{1}{(n - 1)(1 + ln x)^{n-1}} + c$$
  • Question 7
    1 / -0
    Evaluate $$\displaystyle\int^1_0\dfrac{1}{(1+x^2)}dx$$
    Solution
    $$I=\displaystyle\int^1_0\dfrac{dx}{(1+x^2)}\\$$
    $$=[\tan^{-1}x]^1_0\\$$  ....... $$\because\displaystyle \int \dfrac {dx}{ {x^2+a^2} }=\tan^{-1}\dfrac xa+C$$

    $$=(\tan^{-1}1-\tan^{-1}0)\\$$
    $$=\dfrac{\pi}{4}$$.
  • Question 8
    1 / -0
    The integral $$\displaystyle \int_{0}^{\pi_/{3}}\frac{\cos x}{3+4\sin x}d_{X=}$$
    Solution

    $$\displaystyle \int_{0}^{\dfrac{\pi}{3}}\dfrac{\cos   x }{3+4  \sin x}dx=\int_{0}^{\dfrac{\pi}{3}}\dfrac{d(\sin  x)}{3+4  \sin x}$$

    $$\displaystyle =\int_{0}^{\dfrac{\pi}{3}}\dfrac{d (\sin  x) }{3+4  \sin x}=\dfrac{1}{4}\left[\log  (3+4  \sin  x)\right]_{0}^{\dfrac{\pi}{3}}$$

    $$\displaystyle =\dfrac{1}{4}\left[\log  \left[3+4\left(\sin \dfrac{\pi}{3}\right)\right]-\log  (3+4  \sin (0))\right]$$

    $$=\dfrac{1}{4}\left (\log\left( 3+\dfrac{4\sqrt{3}}{2}\right)-\log  (3)\right)$$

    $$=\dfrac{1}{4}(\log  (3+2\sqrt{3})-\log 3)$$

    $$=\dfrac{1}{4}\log \left ( \dfrac{3+2\sqrt{3}}{3} \right )$$

    $$\therefore \displaystyle \int_{0}^{\dfrac{\pi}{3}}\dfrac{\cos   x}{3+4 \sin  x}dx=\dfrac{1}{4} \log  \left(\dfrac{3+2\sqrt{3}}{3}\right)$$

  • Question 9
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{1}^{e^{3}}\frac{dx}{x\sqrt{1+\ln x}}$$
    Solution

    $$\displaystyle \int_{1}^{e^3}\dfrac{dx}{x\sqrt{1+ln  x}}=\displaystyle \int_{1}^{e^3}\dfrac{dlnx}{\sqrt{1+ln  x}}$$

    $$\displaystyle \int_{1}^{e^3}\dfrac{dlnx}{\sqrt{1+ln  x}}=2\sqrt{1+lnx}\displaystyle \displaystyle \vert_{1}^{e^3}$$

    $$=2\sqrt{1+3}-2\sqrt{1}$$

    $$=2\sqrt{4}-2=2(1)$$

    $$=2$$

    So,  $$\displaystyle \int_{1}^{e^3}\dfrac{dx}{x\sqrt{1+ln  x}}=2$$

  • Question 10
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{\pi_/{2}}\frac{cosx}{1+sin^{2}x}dx $$
    Solution

    $$\displaystyle \int_{0}^{\dfrac{\pi}{2}}\dfrac{cos  x}{1+sin^2  x}dx=\displaystyle \int_{0}^{\dfrac{\pi}{2}}\dfrac{d  sin  x}{1+sin^2  x}$$

    $$\displaystyle \int_{0}^{\dfrac{\pi}{2}}\dfrac{d  sin x}{1+sin^2 x}=\left [( tan^{-1}(sin   x)+ c\right ) \displaystyle ]_{0}^{\dfrac{\pi}{2}}\ (\int\dfrac{1}{1+x^2}=\tan^{-1}x)$$

    $$=\left ( tan^{-1}(sin  ( \dfrac{\pi}{2})+ c \right )-\left ( tan^{-1}(sin   0)+ c\right )$$

    $$=tan^{-1}(1)$$

    $$=\dfrac{\pi}{4}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now