Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0


    $$\displaystyle \int_{-1}^{3}\left( \tan^{ -1 }\frac { x }{ x^{ 2 }+1 } +\tan ^{ -1 } \frac { x^{ 2 }+1 }{ x }  \right) dx=$$

  • Question 2
    1 / -0

    If $$\displaystyle \int_{1/\sqrt{3}}^{k}\dfrac{1}{1+x^{2}}dx=$$ $$\dfrac{\pi}{6}$$ 

    then the upper limit $$k=?$$

  • Question 3
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{4x^{3}}{\sqrt{1-x^{8}}}dx =?$$

  • Question 4
    1 / -0

    The integral $$\displaystyle \int_{0}^{\pi/4}\frac{\sin^{9}x}{\cos^{11}x}dx=$$

  • Question 5
    1 / -0


    $$\displaystyle \int_{0}^{\pi_/{2}}\frac{\cos x}{1+\sin x}d_{X=}$$

  • Question 6
    1 / -0

    Evaluate: $$\displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{1+x^{2}}dx$$

  • Question 7
    1 / -0

    Evaluate: $$\displaystyle \int_{1}^{2}\frac{1}{x\sqrt{x^{2}-1}}d{x}$$

  • Question 8
    1 / -0

    The value of $$\int_{0}^{\infty} x.e^{-x^{2}}dx_{=}$$

  • Question 9
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{x^{2}}{1+x^{2}}dx$$ equals

  • Question 10
    1 / -0


    $$\displaystyle \int_{0}^{1}\frac{dx}{e^{x}+e^{-x}}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now