Self Studies

Integrals Test - 16

Result Self Studies

Integrals Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    $$\displaystyle \int_{1}^{2}(\frac{1+x\log x}{x})e^{x}dx_{=}$$
    Solution

    $$\int_{1}^{2}\left ( \dfrac{1+x  \log  x}{x} \right ) e^x  dx$$

    $$\int_{1}^{2}\left ( \dfrac{1}{x}  +  \log  x \right ) e^xdx$$           $$\displaystyle \int e^x [f(x)+f'(x) ] dx=e^x f(x)$$

    $$= \int_{1}^{2} \left ( e^x  \log x+ c\right )  $$

    $$=e^2  \log 2-e   \log  1$$

    $$=e^2  \log  2-0$$

    $$\int_{1}^{2}\left ( \dfrac{1+x  \log  x}{x} \right ) e^x  dx=e^2  \log  2$$

  • Question 2
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{\frac{\sqrt{2}}{3}}^{ \frac{\sqrt{3}}{3}}\displaystyle \frac{dx}{\sqrt{4-9x^{2}}}$$
    Solution

    $$\displaystyle \int_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} \dfrac{dx}{2\sqrt{1-\dfrac{ax^2}{2}}}=\dfrac{1}{2}\displaystyle \int_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}} \dfrac{dx}{\sqrt{1-(\dfrac{3x}{2})^2}}$$

    $$=\left[\dfrac{2}{3}\times \dfrac{1}{2}  sin^{-1}\left(\dfrac{3x}{2}\right)\displaystyle \right]_{\frac{\sqrt{2}}{3}}^{\frac{\sqrt{3}}{3}}$$

    $$=\dfrac{2}{3}\times \dfrac{1}{2} \left [ sin^{-1} \left ( \dfrac{3\sqrt{3}}{3(2)} \right ) -sin^{-1} \left ( \dfrac{3\sqrt{2}}{3\times 2} \right ) \right ]$$

    $$=\dfrac{1}{3} \left [ sin^{-1} \left ( \dfrac{\sqrt{3}}{2} \right ) -sin \left ( \dfrac{1}{\sqrt{2}} \right ) \right ]$$

    $$=\dfrac{1}{3} \left [ \dfrac{\pi}{3}-\dfrac{\pi}{4} \right ]$$

    $$=\dfrac{1}{3} \left ( \dfrac{\pi}{12} \right )$$

    $$=\dfrac{\pi}{36}$$

  • Question 3
    1 / -0
    $$\displaystyle \int_{0}^{\pi /2} \displaystyle \frac{1}{\sin x+\cos x} \ dx $$
    Solution

    $$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{1}{sin  x  +  cos  x }dx$$

    $$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{1+tan^2 \dfrac{x}{2}}{1-tan^2\dfrac{x}{2}+2 tan \dfrac{x}{2}}  dx$$

    $$\displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{2  d  (tan \dfrac{x}{2})}{1-(tan\dfrac{x}{2}+1)^2}=2 \displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{d (tan \dfrac{x}{2})}{(\sqrt{2})^2-(tan \dfrac{x}{2}-1)^2}$$

    $$=2\left [ \dfrac{1}{2\sqrt{2}} \right ]   log   \left | \dfrac{\sqrt{2}+tan\dfrac{x}{2}-1}{\sqrt{2}-(tan\dfrac{x}{2}-1)} \right | _{0}^{\dfrac{\pi}{2}}$$

    $$=\dfrac{1}{\sqrt{2}} log \left ( \dfrac{\sqrt{2}+2}{\sqrt{2}-2} \right )$$

    $$=log \left ( \dfrac{1+\sqrt{2}}{1-\sqrt{2}} \right )$$

    $$=\sqrt{2}log (\sqrt{2}+1)$$

  • Question 4
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{\pi_/{2}}\cos^{5}x.\sin 2xdx$$
    Solution

    $$\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^5x\cdot sin2x dx=\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^5x\cdot 2 sinx   cosx   dx$$

    $$=2\displaystyle \int_{0}^{\dfrac{\pi}{2}}  cos^6 x   sinx  dx=-2\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^6 x\cdot d(cos  x)$$

    $$=-2\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^6  x   dcos  x=-2\left ( \dfrac{cos^7x}{7} \right )\displaystyle \vert_{0}^{\dfrac{\pi}{2}}$$

    $$=-2\left [ \dfrac{cos^7  x}{7}\displaystyle \vert_{0}^{\frac{\pi}{2}} \right ]$$

    $$=-2\left ( \dfrac{-1}{7} \right)=\dfrac{2}{7}$$

    Thus $$\displaystyle \int_{0}^{\dfrac{\pi}{2}}cos^5  x\times sin 2x  dx=\dfrac{2}{7}$$

  • Question 5
    1 / -0
    $$ \int_{\pi /4}^{\pi /2} Cotx.dx_{=}$$
    Solution
    $$\displaystyle \int_{\frac{\pi}{4}} ^{\frac{\pi}{2}} cotx dx$$

    $$=[ln|sinx|]_{{\pi}/{4} }^{{\pi}/{2}}$$

    $$=ln\left |sin\left(\dfrac{\pi}{2}\right)\right |-ln\left |sin\left(\dfrac{\pi}{4}\right)\right |$$

    $$=ln(1)-ln(\dfrac{1}{\sqrt{2}})$$

    $$=0-(-log(\sqrt{2}))$$

    $$=log(\sqrt{2})$$.
  • Question 6
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x^{2}}}$$
    Solution

    $$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{1-x^2}}$$

    $$\displaystyle \int \dfrac{dx}{\sqrt{1-x^2}}=\sin^{-1}x+c$$

    $$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{1-x^2}}=\left[(\sin^{-1}x+c) \right]_{0}^{1}$$

    $$=(\sin^{-1}1+c)-(\sin^{-1}0+c)$$

    $$=\dfrac{\pi}{2}$$

    $$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{1-x^2}}=\dfrac{\pi}{2}$$

  • Question 7
    1 / -0

    $$\displaystyle \int_{0}^{\displaystyle \tfrac{\pi}{4}}\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}dx=$$
    Solution

    Consider, $$I=\displaystyle \int_{0}^{\dfrac{\pi}{4}}\sqrt{\dfrac{1-sin 2  x}{1+sin 2  x}}\cdot dx$$


    $$\displaystyle I= \int_{0}^{\dfrac{\pi}{4}}\sqrt{\dfrac{(sinx - cos x)^2}{(sin x + cos x)^2}}\cdot  dx$$

    $$\displaystyle I=\int_{0}^{\dfrac{\pi}{4}}{\dfrac{(sinx - cos x)}{sin x + cos x}}\cdot dx$$


    $$\displaystyle I=-\int_{0}^{\dfrac{\pi}{4}}{\dfrac{cos  x-  sin  x}{sin  x +  cos  x}}dx$$

    $$I=-\left[log |sin  x  +  cos  x|\right]_0^{\frac{\pi}{4}}$$

    $$I=-\left[log (sin  {\frac{\pi}{4}}  +  cos  {\frac{\pi}{4}}) -\log (\sin 0+\cos 0))\right]$$


    $$I=-\left[log \left (\dfrac{1}{\sqrt2}+\dfrac{1}{\sqrt 2}\right)-\log 1\right]$$


    $$I=-log \left (  \dfrac{1}{\sqrt 2} +\dfrac{1}{\sqrt 2} \right ) =-log \sqrt{2}$$

    So,  $$\displaystyle \int_{0}^{\dfrac{\pi}{4}}\sqrt{\dfrac{1- sin 2 x}{1+sin 2 x}}x=-log (\sqrt{2})$$

  • Question 8
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{1}\frac{(\sin^{-1} {x})^{2}}{\sqrt{1-x^{2}}}dx $$
    Solution

     $$\displaystyle \int_{0}^{1}\dfrac{(sin^{-1}x)^2}{\sqrt{1-x^2}} \cdot dx$$

    $$\displaystyle \int \dfrac{(sin^{-1}x)^2}{\sqrt{1-x^2}} \cdot dx=\displaystyle \int (sin^{-1}x)d(sin^{-1}x)$$

    $$=\dfrac{(sin^{-1}x)^3}{3}+c$$

    $$\displaystyle \int_{0}^{1}\dfrac{(sin^{-1}x)^2}{\sqrt{1-x^2}} \cdot dx=\left[\dfrac{(sin^{-1}x)^3}{3}+c\right]_{0}^{1}$$

    $$=\left ( \dfrac{(sin^{-1}1)^3}{3}+c\right )-\left ( \dfrac{(sin^{-1}0)^3}{3}+c\right )$$

    $$=\dfrac{1}{3}\left ( \dfrac{\pi}{2} \right )^3$$

    $$=\dfrac{\pi^3}{24}$$

  • Question 9
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{1/2}^{1}\frac{1}{\sqrt{1-x^{2}}}dx$$
    Solution

    $$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{\sqrt{1-x^2}}dx$$

    We know that $$\displaystyle \int \frac{1}{\sqrt{1-x^2}}dx=(\sin^{-1}x+c)$$

    $$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{\sqrt{1-x^2}}dx=\left[(\sin^{-1}x+c)\displaystyle \right]_{\frac{1}{2}}^{1}$$

    $$=(sin^{-1}1+c)-(\sin{\dfrac{1}{2}}+c)$$

    $$=\sin^{-1}1-\sin^{-1}\dfrac{1}{2}$$

    $$=\dfrac{\pi}{2}-\dfrac{\pi}{6}$$

    $$=\dfrac{\pi}{3}$$

    $$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{\sqrt{1-x^2}}dx=\dfrac{\pi}{3}$$

  • Question 10
    1 / -0

    $$\displaystyle \int_{0}^{1}\sqrt{1-x^{2}}dx_{=}$$
    Solution

    $$\int_{0}^{1}\sqrt{1-x^2}\cdot dx$$
    $$\int \sqrt{1-x^2}dx=\dfrac{x}{2}\sqrt{a^2-x^2}+\dfrac{a^2}{2} sin^{-1}\left ( \dfrac{x}{a} \right )+ c $$
    $$\int_{0}^{1}\sqrt{1-x^2}\cdot dx= \left ( \dfrac{1}{2} \sqrt{1^2-x^2}+\dfrac{a^2}{2}sin^{-1} \left ( \dfrac{x}{a} \right )+c \right )\int_{0}^{1}$$
    $$=\left ( \dfrac{1}{2} (0)+ \dfrac{1}{2} sin^{-1}(1)+c \right ) - (0+0+c)$$
    $$=\dfrac{1}{2}\dfrac{\pi}{2}$$
    $$=\dfrac{\pi}{4}$$
    $$\int_{0}^{1}\sqrt{1-x^2}dx=\dfrac{\pi}{4}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now