Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{0}^{a}\sqrt{a^{2}-x^{2}}dx$$

  • Question 2
    1 / -0


    $$\displaystyle \int_{0}^{a}\frac{1}{a^{2}+x^{2}}dx_{=}$$

  • Question 3
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{\frac{a}{2}}^{a}\frac{1}{\sqrt{a^{2}-x^{2}}}dx$$

  • Question 4
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{0}^{1}\frac{x}{1+x^{2}}dx$$

  • Question 5
    1 / -0


    The integral $$\displaystyle \int_{0}^{1}\frac{x^{3}}{1+x^{8}}dx=$$

  • Question 6
    1 / -0


    $$\displaystyle \int_{0}^{1}\frac{1}{1+x}dx_{=}$$

  • Question 7
    1 / -0

    The integral $$\displaystyle \int_{0}^{1}\frac{(\mathrm{t}\mathrm{a}\mathrm{n}^{-1}{\mathrm{x})^{3}}}{1+\mathrm{x}^{2}}\mathrm{d}\mathrm{x}=$$

  • Question 8
    1 / -0


    $$\displaystyle \int_{0}^{1/2}\mathrm{e}^{\mathrm{x}}\left[ { s }{ i }{ n }^{ -1 }{ x }+\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  }  \right] $$ dx $$=$$


  • Question 9
    1 / -0


    The integral $$\displaystyle \int_{0}^{\pi/4} \displaystyle \frac{e^{\tan x}}{\cos^{2}x}dx=$$

  • Question 10
    1 / -0

    If  $$\displaystyle \int_{0}^{k}\frac{\cos x}{1+\sin^{2}x}dx=\frac{\pi}{4}$$ then $${k}=?$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now