Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0


    $$\displaystyle \int_{0}^{1}\tanh xdx=$$

  • Question 2
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{1}^{e}\frac{(\ln x)^{3}}{x}dx $$

  • Question 3
    1 / -0


    $$\displaystyle \int_{0}^{\pi}\frac{\tan x}{\sec x+\cos x}dx_{=}$$

  • Question 4
    1 / -0


    $$\displaystyle \int_{0}^{1}\mathrm{e}^{\mathrm{x}}(\mathrm{e}^{\mathrm{x}}+1)^{3}\mathrm{d}\mathrm{x}=$$

  • Question 5
    1 / -0

    Evaluate: $$\displaystyle \int_{\sqrt{8}}^{\sqrt{15}}x\sqrt{1+x^{2}}.dx$$

  • Question 6
    1 / -0


    $$\displaystyle \int_{0}^{1}\frac{xdx}{(x^{2}+1)^{2}}=$$

  • Question 7
    1 / -0

    Evaluate: $$\displaystyle \int_{0}^{\dfrac{\pi}{2}}e^{\sin^2 x}\sin 2xdx$$

  • Question 8
    1 / -0


    $$\displaystyle \int_{0}^{4}\sqrt{16-x^{2}}d_{X}=$$

  • Question 9
    1 / -0


    Find $$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sec^{2}xdx}{(\sec x+\tan x)^{n}}$$, where $$(\mathrm{n}>2)$$

  • Question 10
    1 / -0

    $$\displaystyle \int_{0}^{\pi/2}\frac{d_{X}}{4\cos^{2}x+9\sin^{2}x}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now