Self Studies

Integrals Test - 19

Result Self Studies

Integrals Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate the following definite integral:
    $$\displaystyle \int_{0}^{\pi_/{2}}\frac{1}{4+5\cos x}dx=$$
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{\frac{\pi}{2}} { \cfrac { 1 }{ 4+5cosx } dx } $$

    Substitute $$tan\left( \cfrac { x }{ 2 }  \right) =t\Rightarrow \cfrac { 1 }{ 2 } { sec }^{ 2 }\left( \cfrac { x }{ 2 }  \right) dx=dt$$

    So, $$x \rightarrow 0 \ \Rightarrow t \rightarrow 0$$ and $$x \rightarrow \dfrac{\pi}{2} \ \Rightarrow t \rightarrow {1}$$

    gives $$\cos x=\cfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } } ,dx=\cfrac { 2dt }{ 1+{ t }^{ 2 } } $$

    $$\Rightarrow$$ $$\displaystyle I=\int _{ 0 }^{ 1 } { \cfrac { 1 }{ 4+5\cfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } }  } \ \cfrac { 2dt }{ 1+{ t }^{ 2 } }  } =2\int _{ 0 }^{ 1 }{ \cfrac { 1 }{ 9-{ t }^{ 2 } } dt }$$

    $$\Rightarrow$$ $$\displaystyle I =\cfrac { 2 }{ 3 } \int _{ 0 }^{ 1 }{ \cfrac { 1 }{ 1-\cfrac { { t }^{ 2 } }{ 9 }  } dt } $$

    Substitute $$\cfrac { t }{ 3 } =u\Rightarrow dt=3du$$
    So, $$t \rightarrow 0 \ \Rightarrow u \rightarrow 0$$ and $$t \rightarrow 1 \ \Rightarrow u \rightarrow \dfrac{1}{3}$$

    $$\Rightarrow$$ $$\displaystyle I=\frac { 2 }{ 3 } \int _{ 0 }^{ \frac { 1 }{ 3 }  }{ \cfrac { 1 }{ 1-{ u }^{ 2 } } du } =\cfrac { 2 }{ 3 } { \left[ \cfrac { 1 }{ 2 } \log { \cfrac { 1+u }{ 1-u }  }  \right]  }_{ 0 }^{ \frac { 1 }{ 3 }  }$$


    $$\Rightarrow$$ $$\displaystyle I=\cfrac { 1 }{ 3 } \left( \log { 2 } -0 \right) =\cfrac { 1 }{ 3 } \log { 2 } $$
  • Question 2
    1 / -0
    $$\displaystyle \int_{0}^{1}\frac{1}{\sqrt{2+3x}}dx_{=}$$
    Solution
    $$\displaystyle I=\int_{0}^{1}\frac{1}{\sqrt{2+3x}}dx$$

    Put $$3x+2=t$$
    $$\Rightarrow dx=\displaystyle \frac{dt}{3}$$

    $$\displaystyle I=\frac {1}{3}\int_{2}^{5}\frac{1}{\sqrt{t}}dt$$

    $$\Rightarrow \displaystyle I =\frac{2}{3}[\sqrt{t}]_{2}^{5}$$

    $$\Rightarrow I=\dfrac{2}{3} (\sqrt{5}-\sqrt{2})$$
  • Question 3
    1 / -0

    $$\displaystyle \int_{0}^{\infty}(a^{-x}-b^{-x})dx=(\mathrm{a}>1,\mathrm{b}>1)$$
    Solution
    $$\displaystyle I=\int_{0}^{\infty}(a^{-x}-b^{-x})dx$$

    $$\displaystyle = -\frac{1}{\log a}(a^{-x})_{0}^{\infty}+\frac{1}{\log b}(b^{-x})_{0}^{\infty}$$

    $$\displaystyle =\frac{1}{\log a}-\frac{1}{\log b}$$

  • Question 4
    1 / -0

    $$\displaystyle \int_{0}^{a}\frac{x-a}{x+a} dx =$$
    Solution

    To find : $$\displaystyle \int_{0}^{a}\dfrac{x-a}{x+a} \cdot  dx$$
    Consider, $$\displaystyle \int \dfrac{x-a}{x+a} \cdot  dx=\int 1 - 2a \int \dfrac{1}{(x+a)}dx$$
    $$=x-2a \log (x+a)+c$$
    Then, $$\displaystyle \int_{0}^{a}\dfrac{x-a}{x+a} \cdot  dx=\left[x-2a \log (x+a)+c\right]_{0}^{a}$$
    $$=(a-2a \log (1a)+c)- [0-2a \log (a)+c]$$
    $$=a-2a \log 2$$
    $$\displaystyle \int_{0}^{a}\dfrac{x-a}{x+a}\cdot dx= a-2a \log 2$$

  • Question 5
    1 / -0

    If $$\displaystyle \int_{0}^{60}\frac{dx}{2x+1}=\log   a$$, then $$ a= $$
    Solution
    Let $$I=\displaystyle \int_{0} ^{60} \dfrac{dx}{2x+1}$$
    $$=\left [\dfrac{\log(2x+1)}{2}\right]_{0} ^{60}$$
    $$=\dfrac{1}{2}[\log (121)-\log(1)]$$
    $$=\dfrac{\log (121)}{2}$$
    $$=\log(\sqrt{121})$$
    $$=\log 11$$
    Thus $$\log 11=\log a$$
    $$\Rightarrow a=11$$
  • Question 6
    1 / -0

    $$\displaystyle \int_{1}^{2}\frac{\mathrm{d}\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}=$$
    Solution

    $$\int_{1}^{2}\dfrac{dx}{\sqrt{1+x^2}}=\log |x+\sqrt{x^2+a}|+c$$
    $$\int_{1}^{2}\dfrac{dx}{\sqrt{1+x^2}}=\log |x+\sqrt{x^2+1}|+c$$
    $$=\log |2+\sqrt{5}|-\log |1+\sqrt{2}|$$
    $$=\log \left | \dfrac{2+\sqrt{5}}{1+\sqrt{2}} \right |$$
    $$\int_{1}^{2}\dfrac{dx}{\sqrt{1+x^2}}=\log \left | \dfrac{2+\sqrt{5}}{1+\sqrt{2}} \right |$$

  • Question 7
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{1}\frac{1-x}{1+x}dx$$
    Solution

    $$\displaystyle \int_{0}^{1} \left ( \dfrac{1-x}{1+x} \right )  dx$$

    $$\displaystyle \int  \dfrac{1-x}{1+x} dx = \displaystyle \int \dfrac{2}{1+x}dx -\displaystyle \int1 \cdot  dx$$

    $$=2\log (1+x) - x + c$$

    $$\displaystyle \int \dfrac{1-x }{1+x}dx = 2 \log (1+x)- x+c$$

    $$\displaystyle \int_{0}^{1}\dfrac{1-x}{1+x}dx= \left(2 \log (1+x)-x+c\right)_{0}^{1}$$

    $$=2 \log (2)-1$$

    $$=\log 4- \log \ e$$

    $$=\log \left(\dfrac{4}{e}\right)$$

  • Question 8
    1 / -0
    $$\int_{-1}^{1} \displaystyle \frac{d{x}}{1+x^{2}}=$$
    Solution

    $$=\int_{-1}^{1}\dfrac{dx}{1+x^2}$$
    $$\int \dfrac{dx}{1+x^2}=tan^{-1}x+c$$
    $$\int_{-1}^{1}\dfrac{dx}{1+x^2}=(tan^{-1}x+c)\int_{-1}^{1}$$
    $$=tan^{-1}1-tan^{-1}(-1)$$
    $$=\dfrac{\pi}{4}-(\dfrac{-\pi}{4})$$
    $$=\dfrac{\pi}{2}$$
    So,
    $$\int_{-1}^{1}\dfrac{dx}{1+x^2}=\dfrac{\pi}{2}$$

  • Question 9
    1 / -0

    $$\displaystyle \int_{1}^{\infty}\left( \frac { 1 }{ 1+x^{ 2 } }  \right) d{ x }=$$

    Solution

    $$\int_{1}^{\infty }\left [ \dfrac{1}{1+x^2} \right ]  dx$$
    $$tan^{-1}x \int_{1}^{\infty }$$
    $$\dfrac{\pi}{2}-\dfrac{\pi}{4}=\dfrac{\pi}{4}$$

  • Question 10
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{\pi /8} \cos^{3}4x\ dx $$
    Solution
    Given that $$\int_{0}^{\tfrac{\pi}{8}}\cos^3(4x)dx$$       
    We can write $$\cos^3(4x)= \cos^2(4x)\cos(4x) =[1-\sin^2(4x)]\cos(4x)$$
    $$\int_{0}^{\tfrac{\pi}{8}}[1-\sin^2(4x)]\cos(4x)$$      ............1
    Now let $$\sin(4x)= t$$        ........2
    when $$x=0, t = 0$$; When $$x=\cfrac{\pi}{8}, t = 1$$
    On differentiating equation 2 we get, 
    $$\cfrac{\cos(4x)}{4}dx=dt$$   .........3
    Substituting the values of equation 2 and 3 in equation 1.
    $$\int_{0}^{1}\cfrac{[1-t^2]}{4}dt$$
    $$=\int_{0}^1 \cfrac{1}{4}dt - \int_{0}^1 \cfrac{t^2}{4}dt$$
    $$=[\cfrac{t}{4}]_{0}^{1} - [\cfrac{t^3}{12}]_{0}^{1}$$
    $$=\cfrac{1}{4}  - \cfrac{1}{12}$$
    $$=\cfrac{3-1}{12}$$
    $$=\cfrac{2}{12}$$
    $$=\cfrac{1}{6}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now