Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{1}^{2}\sqrt{(x-1)(2-x)}dx $$

  • Question 2
    1 / -0

    $$\displaystyle \int \sec^{2}x.\text{cosec}^{2}xdx=$$

  • Question 3
    1 / -0

    $$\int_{0}^{\pi /2} \sin^{4}x.\cos^{2}xd_{X=}$$

  • Question 4
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{1}^{3}\frac{d_{X}}{\sqrt{(x-1)(3-x)}}$$

  • Question 5
    1 / -0


    $$\displaystyle \int_{0}^{\infty}\frac{dx}{(x+\sqrt{x^{2}+1})^{5}}=$$

  • Question 6
    1 / -0

    Evaluate : $$\displaystyle \int\frac{\cot^{2}x}{(co\sec^{2}x+co\sec x)}d{x}$$

  • Question 7
    1 / -0

    $$\displaystyle \int_{0}^{1}\sqrt{x(1-x)}dx=$$

  • Question 8
    1 / -0

    Evaluate the integral
    $$\displaystyle\int_{\pi}^{5\pi/4}\frac{\sin 2x}{\cos^4 x + \sin^4 x}dx $$

  • Question 9
    1 / -0


    $$\displaystyle \int_{0}^{a}\frac{x^{5}dx}{\sqrt{a^{2}-x^{2}}}=$$

  • Question 10
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{0}^{1}  cos ^{-1}\left(\displaystyle \frac{1- {x}^{2}}{1+ {x}^{2}}\right) {d} {x}$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now