Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Evaluate: $$\displaystyle \int_{1/3}^{1}\frac{(x-x^{3})^{1/3}}{x^{4}}dx$$.

  • Question 2
    1 / -0

    Evaluate the integral
    $$I=\displaystyle \int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ \cfrac { { sin }^{ -1 }x }{ { \left( 1-{ x }^{ 2 } \right)  }^{ \frac { 3 }{ 2 }  } } dx }  $$

  • Question 3
    1 / -0


    $$\displaystyle \int_{\log 2}^{t}\frac{d_{X}}{\sqrt{e^{x}-1}}=\frac{\pi}{6}$$, then $$\mathrm{t}=$$

  • Question 4
    1 / -0

    Evaluate: $$\displaystyle \int_{0}^{1} \cos$$ $$\left(2 \cot^{-1}\sqrt{\displaystyle \frac{1- {x}}{1+ {x}}}\right)dx $$

  • Question 5
    1 / -0

    Evaluate: $$\displaystyle \int_{0}^{\pi /2} \sin^{3}x.\cos^{3}x dx$$

  • Question 6
    1 / -0


    lf $$0<\mathrm{a}<\mathrm{c},\ 0<\mathrm{b}<\mathrm{c}$$ then $$\displaystyle \int_{0}^{\infty}\frac{a^{x}-b^{x}}{c^{x}}dx=$$

  • Question 7
    1 / -0


    $$\displaystyle \int_{0}^{1}\frac{xe^{x}}{(x+1)^{2}}dx=$$

  • Question 8
    1 / -0


    The solution of the equation $$\displaystyle \int_{\sqrt{2}}^{\mathrm{x}}\frac{\mathrm{d}\mathrm{x}}{\mathrm{x}\sqrt{\mathrm{x}^{2}-1}}=\frac{\pi}{12}$$ is

  • Question 9
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{0}^{1}\frac{ {d} {x}}{ {x}^{2}+2 {x} {c} {o} {s}\alpha+1}$$

  • Question 10
    1 / -0


    $$\displaystyle \int_{0}^{\pi/2}\frac{1}{1+4\sin^{2}x}dx=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now