Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0


    Evaluate the following definite integral:

    $$\displaystyle \int^{\pi /4}_{-\pi /4}\log(\cos x+\sin x)dx$$

  • Question 2
    1 / -0

    Evaluate the integral
    $$\displaystyle \int_{0}^{a}\sqrt{\frac{a+x}{a-x}}dx$$

  • Question 3
    1 / -0


    $$\displaystyle \int_{0}^{1}\sqrt{\frac{\mathrm{x}}{1-\mathrm{x}^{3}}}\mathrm{d}\mathrm{x}=$$

  • Question 4
    1 / -0


    $$\displaystyle \int_{0}^{3}x\sqrt{1+x}dx=$$

  • Question 5
    1 / -0


    $$\displaystyle \int_{\pi^{2}/16}^{\pi^{2}/4}\frac{\sin\sqrt{x}}{\sqrt{x}}dx=$$

  • Question 6
    1 / -0


    $$\displaystyle \int_{0}^{1}\frac{dx}{x+\sqrt{x}}=$$

  • Question 7
    1 / -0


    lf $$\displaystyle \int_{0}^{k}\frac{dx}{2+8x^{2}}=\frac{\pi}{16}$$ then $$\mathrm{k}=$$

  • Question 8
    1 / -0

    If $$ \displaystyle    {I}_{ {n}}=\int^{\pi/2 }_{\pi/4}( {T} {a} {n}\theta)^{- {n}}. {d}\theta $$ for $$( {n}>1)$$ 
    then $$I_{n}+I_{n+2} = ?$$

  • Question 9
    1 / -0

    Evaluate: $$\displaystyle \int_{0}^{\pi /4}\tan^{5}xdx$$

  • Question 10
    1 / -0

    If $$\displaystyle \mathrm{U}_{\mathrm{n}}=\int^{\pi /4}_{0} \mathrm{t}\mathrm{a}\mathrm{n}^{\mathrm{n}}\theta \mathrm{d}\theta$$, then $$\mathrm{u}_{10}+\mathrm{u}_{12}$$ is equal to:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now