Self Studies

Integrals Test - 25

Result Self Studies

Integrals Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{\pi/4}\frac{\sin x+\cos x}{3+\sin 2x} dx$$ 
    Solution

    $$\displaystyle \int_{0}^{\pi/2}\dfrac{sinx+cosx}{3+sin2x}dx.$$

    $$\displaystyle \int_{0}^{\pi/2}\dfrac{sinx+cosx}{4-(sinx-cosx)^{2}}$$

    $$dx= \displaystyle \int_{0}^{\pi/2}\dfrac{d(sinx-cosx)}{(2)^{2}-(sinx-cosx)^{2}}$$

    $$=\dfrac{1}{4}\log\left | \dfrac{2+(sinx-cosx)}{2-(sinx-cosx)} \right |_{0}^{\pi}$$

    $$=\dfrac{1}{4}\left ( \log\left | \dfrac{2+0}{2-0} \right | -\log\left|\dfrac{2-1}{2+1}\right | \right )$$

    $$=\dfrac{1}{4} (-\log \dfrac{1}{3})$$

    $$= \dfrac{1}{4} \log(3)$$

  • Question 2
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{1}\frac{x^{3}}{1+x^{8}} dx$$ 
    Solution
    Let, $$z=x^4\implies dz=4x^3dx\implies x^3dx=\dfrac{dz}{4}$$
     
    When $$ x=0,z=0$$ and when $$x=1,z=1$$

    Hence,integration becomes:-

    $$\displaystyle\dfrac{1}{4}\int_{0}^{1} \dfrac{dz}{1+z^2}$$

    $$ =\dfrac{1}{4}\displaystyle\left[\tan^{-1}{z}\right]_{0}^{1}$$

    $$=\dfrac{1}{4}\displaystyle\left[\dfrac{\pi}{4}-0\right]$$

    $$=\dfrac{\pi}{16}$$

    Hence, answer is option-(C).
  • Question 3
    1 / -0
    The value of $$x$$ such that  $$\displaystyle \int_{\sqrt{2}}^{\mathrm{x}}\frac{1}{x\sqrt{x^{2}-1}}dx=\frac{\pi}{12}$$ is
    Solution
     Let $$ x=\sec{\theta} \implies dx=\sec{\theta}\tan{\theta}d\theta$$

    When $$ x=\sqrt{2}, \theta=\dfrac{\pi}{4}$$ and when $$x=x, \theta=\sec^{-1} {x}$$

    Now, $$\displaystyle\int_{\pi/4}^{\sec^{-1} {x}} \dfrac{1}{\sec{\theta} \sqrt{\sec^2{\theta} -1}}\sec{\theta}\tan{\theta}d\theta=\dfrac{\pi}{12}$$

    $$\implies\displaystyle\int_{\pi/4}^{\sec^{-1} {x}} \dfrac{1}{\sec{\theta} \tan{\theta}}\sec{\theta}\tan{\theta}d\theta=\dfrac{\pi}{12}$$

    $$\implies\displaystyle\int_{\pi/4}^{\sec^{-1} {x}} d\theta=\dfrac{\pi}{12}$$

    $$\implies\sec^{-1} {x} - \dfrac{\pi}{4}=\dfrac{\pi}{4}$$

    $$\implies\sec^{-1} {x}=\dfrac{\pi}{4}+\dfrac{\pi}{12}=\dfrac{\pi}{3}$$

    $$\implies x=\sec{\dfrac{\pi}{3}}=2$$

    $$\implies x=2$$

    Hence,answer is option-(D).
  • Question 4
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{\pi/4}\sec^{6}x \ dx$$
    Solution
    $$\displaystyle\int_{0}^{\pi/4} \sec^6{x}dx$$

    $$=\displaystyle\int_{0}^{\pi/4}\sec^4{x}.sec^2{x}dx$$

    $$\displaystyle\int_{0}^{\pi/4} \left(\tan^2{x}+1\right)^2 \sec^2{x}dx$$

    Let, $$z=\tan{x}\implies dz=\sec^2{x}dx$$

    And when $$ x=0, z=0$$ and when $$ x=\dfrac{\pi}{4}, z=1$$

    Now, integration becomes:-

    $$\displaystyle\int_{0}^{1} \left(z^2+1\right)^2dz$$

    $$=\displaystyle\int_{0}^{1} \left(z^4+2z^2+1\right)dz$$

    $$=\dfrac{1}{5}\left[z^5\right]_{0}^{1}+\dfrac{2}{3}\left[z^3\right]_{0}^{1}+\left[z\right]_{0}^{1}$$

    $$=\dfrac{1}{5}+\dfrac{2}{3}+1$$

    $$=\dfrac{28}{15}$$

    Hence, answer is option-(B).
  • Question 5
    1 / -0
    lf $$f(x)=\left\{\begin{array}{l}e^{\cos x}\sin x, for |x|\leq 2\\2    ;       otherwise\end{array}\right.$$, then $$\displaystyle \int_{-2}^{3}f(x)dx$$ is
    Solution
    $$I=\displaystyle\int_{-2}^{3}f(x)dx$$

    $$I=\displaystyle\int_{-2}^{2}e^{\cos{x}}\sin{x}dx+\int_{2}^{3}2dx$$

    consider, $$f(x)=e^{\cos{x}}\sin{x}$$

    so, $$f(-x)=e^{\cos{(-x)}}\sin{(-x)}$$

    $$\Rightarrow$$ $$f(-x)=-e^{\cos{x}}\sin{x}=-f(x)$$

    $$\Rightarrow$$ $$e^{\cos{x}}\sin{x}$$ is an odd function

    hence, $$\displaystyle\int_{-2}^{2}e^{\cos{x}}\sin{x}dx=0$$

    Thus, $$I=\displaystyle\int_{2}^{3} 2dx$$

    $$I=2\left[x\right]_{2}^{3}=2(3-2)$$

    $$I=2$$

    Hence, answer is option-(C).
  • Question 6
    1 / -0

    The function $$F(x)=\displaystyle \int_{0}^{x}\log(t+\sqrt{1+t^{2}})dt$$ is
    Solution
    $$f(x)=\int_{0}^{x}log(t+\sqrt{1+t^{2}})dt$$
    $$f(-x)=\int_{0}^{-x} log(t+\sqrt{1+t^{2}})dt$$
    let t=-y
    =$$-\int_{0}^{x}log(-y+\sqrt{1+}y^{2})dy$$
    $$=-\int_{0}^{x}log(\sqrt{1+y^{2}}-y)dy$$
    $$+\int_{0}^{4}log(\sqrt{1+y^{2}}+y)dy$$
    $$f(-x)=\int_{0}^{x}log\sqrt{1+t^{2}+t}dt$$
    So, f(x)=f(-x) even function
  • Question 7
    1 / -0

    The value of $$\displaystyle \int_{0}^{1}\frac{2^{2x+1}-5^{2x-1}}{10^{x}} dx$$ is
    Solution

    $$\int_{0}^{1}\left ( \dfrac{2^{2x+1}+5^{2x-1}}{10x} \right )dx$$
    $$2\int_{0}^{1}\left ( \dfrac{4}{10} \right )^{xdx}-1/5\int_{0}^{1}\dfrac{25}{10}^{x}dx$$
    $$=2\dfrac{(\dfrac{4}{10})^{x}}{log\dfrac{(4)}{10}}\int_{0}^{1}-\dfrac{\dfrac{1}{5}(\dfrac{25}{10})}{log(\dfrac{25}{10})}$$
    $$=\dfrac{2\left [ (\dfrac{4}{10})-1 \right ]}{log(2/5)}-\dfrac{1/5\left [ (\dfrac{25}{10}-1) \right ]}{log(5/2)}$$
    $$\dfrac{2(-3/5)}{l0g(2/5)}-\dfrac{1/5(3/2)}{log(5/2)}$$
    $$=-3/5\left [ \dfrac{2}{log(2/5)}+\dfrac{1}{2log}(5/2) \right ].$$

  • Question 8
    1 / -0

    lf $$\displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{x}dx=k\int_{0}^{\pi/2}\frac{x}{\sin x}dx$$, then the value of $$k$$ is
    Solution
    Let $$I=\int _{ 0 }^{ \cfrac { \pi  }{ 2 }  }{ \cfrac { x }{ sinx } dx } $$

    Substitute $$tan\left( \cfrac { x }{ 2 }  \right) =t\Rightarrow \cfrac { 1 }{ 2 } { sec }^{ 2 }\left( \cfrac { x }{ 2 }  \right) dx=dt$$

    gives $$sinx=\cfrac { 2t }{ 1+{ t }^{ 2 } } ,dx=\cfrac { 2dt }{ 1+{ t }^{ 2 } } $$

    $$I=\int _{ 0 }^{ 1 }{ \cfrac { 2{ tan }^{ -1 }t }{ \cfrac { 2t }{ 1+{ t }^{ 2 } }  } \cfrac { 2dt }{ 1+{ t }^{ 2 } }  }
    =2\int _{ 0 }^{ 1 }{ \cfrac { { tan }^{ -1 }t }{ t } dt } =2\int _{ 0 }^{ 1 }{ \cfrac { { tan }^{ -1 }x }{ x } dx } \\ \Rightarrow k=2$$
  • Question 9
    1 / -0

    The value of the integral $$\displaystyle \int_{0}^{\infty}\frac{1}{1+x^{4}} dx$$ is
    Solution
    $$I=\int _{ 0 }^{ \infty  }{ \cfrac { 1 }{ x^{ 4 }+1 } dx } =\int _{ 0 }^{ \infty  }{ \left( \cfrac { \sqrt { 2 } x-2 }{ 4\left( -x^{ 2 }+\sqrt { 2 } x-1 \right)  } +\cfrac { \sqrt { 2 } x+2 }{ 4\left( x^{ 2 }+\sqrt { 2 } x+1 \right)  }  \right) dx } \\ =\cfrac { 1 }{ 4 } \int { \cfrac { \sqrt { 2 } x+2 }{ x^{ 2 }+\sqrt { 2 } x+1 } dx } +\cfrac { 1 }{ 4 } \int { \cfrac { \sqrt { 2 } x-2 }{ -x^{ 2 }+\sqrt { 2 } x-1 } dx } \\ =\cfrac { 1 }{ 4\sqrt { 2 }  } \int { \cfrac { \sqrt { 2 } +2x }{ x^{ 2 }+\sqrt { 2 } x+1 } dx } +\cfrac { 1 }{ 4 } \int { \cfrac { 1 }{ x^{ 2 }+\sqrt { 2 } x+1 } dx } +\cfrac { 1 }{ 4 } \int { \cfrac { \sqrt { 2 } x-2 }{ -x^{ 2 }+\sqrt { 2 } x-1 } dx } $$
    Let $${ I }_{ 1 }=\cfrac { 1 }{ 4\sqrt { 2 }  } \int { \cfrac { \sqrt { 2 } +2x }{ x^{ 2 }+\sqrt { 2 } x+1 } dx } $$
    Substituting $$t=x^{ 2 }+\sqrt { 2 } x+1\Rightarrow dt=\left( 2x+\sqrt { 2 }  \right) dx$$, we get
    $${ I }_{ 1 }=\cfrac { 1 }{ 4\sqrt { 2 }  } \int { \cfrac { 1 }{ t } dt } =\cfrac { \log { t }  }{ 4\sqrt { 2 }  } =\cfrac { \log { \left( x^{ 2 }+\sqrt { 2 } x+1 \right)  }  }{ 4\sqrt { 2 }  } $$
    Now let $${ I }_{ 2 }=\cfrac { 1 }{ 4 } \int { \cfrac { 1 }{ x^{ 2 }+\sqrt { 2 } x+1 } dx } $$
    Substituting $$t=x+\cfrac { 1 }{ \sqrt { 2 }  } \Rightarrow dt=dx$$, we get
    $${ I }_{ 2 }=\cfrac { 1 }{ 4 } \int { \cfrac { 1 }{ t^{ 2 }+\cfrac { 1 }{ 2 }  } dt } =\cfrac { 1 }{ 4 } \int { \cfrac { 2 }{ 2t^{ 2 }+1 }  } =tan^{ -1 }\left( \cfrac { \sqrt { 2 } x+1 }{ 2\sqrt { 2 }  }  \right) $$
    And let $${ I }_{ 3 }=\cfrac { 1 }{ 4 } \int { \cfrac { \sqrt { 2 } x-2 }{ -x^{ 2 }+\sqrt { 2 } x-1 } dx } $$
    $$=\cfrac { 1 }{ 4 } \int { \left( \cfrac { \sqrt { 2 } x-2 }{ \sqrt { 2 } \left( -x^{ 2 }+\sqrt { 2 } x-1 \right)  } -\cfrac { 1 }{ -x^{ 2 }+\sqrt { 2 } x-1 }  \right) dx } \\ =-\cfrac { log\left( -x^{ 2 }+\sqrt { 2 } x-1 \right)  }{ 4\sqrt { 2 }  } -\cfrac { tan\left( 1-\sqrt { 2 } x \right)  }{ 2\sqrt { 2 }  } \\ $$
    Therefore resubstituting $${ { I }=I }_{ 1 }+{ I }_{ 2 }+{ I }_{ 3 }$$
    $$\int _{ 0 }^{ \infty  }{ \cfrac { 1 }{ x^{ 4 }+1 } dx } =\left[ \cfrac { \log { \left( x^{ 2 }+\sqrt { 2 } x+1 \right)  }  }{ 4\sqrt { 2 }  } +tan^{ -1 }\left( \cfrac { \sqrt { 2 } x+1 }{ 2\sqrt { 2 }  }  \right) -\cfrac { log\left( -x^{ 2 }+\sqrt { 2 } x-1 \right)  }{ 4\sqrt { 2 }  } -\cfrac { tan\left( 1-\sqrt { 2 } x \right)  }{ 2\sqrt { 2 }  }  \right] _{ 0 }^{ \infty  }\\ =\cfrac { \pi  }{ 2\sqrt { 2 }  } $$

  • Question 10
    1 / -0
    $$\displaystyle \int e^{tan^{-1}x}\left[\frac{1+x+x^{2}}{1+x^{2}}\right]dx=$$
    Solution
    Let $$I=\displaystyle \int e^{\tan^{-1}x}\left[\frac{1+x+x^{2}}{1+x^{2}}\right]dx$$

    $$=\displaystyle \int e^{\tan^{-1}x}\left[1+\frac {x}{1+x^2}\right]dx$$

    $$=\displaystyle \int \left[e^{\tan^{-1}x}+\frac {xe^{\tan^{-1}x}}{1+x^2}\right]dx$$
    For $$f(x)=e^{\tan^{-1} x}$$, above integral $$I$$ reduces in the form of $$\displaystyle \int [f(x)+x  f^{'}(x)]dx$$
    But we know that, $$\dfrac{d}{dx} (xf(x)+c) = \displaystyle [f(x)+x  f^{'}(x)]$$
    $$\therefore \displaystyle \int [f(x)+x  f^{'}(x)]dx=xf(x)+c$$

    $$\therefore I = \displaystyle xe^{\tan^{-1}x}+c$$
     $$\therefore I=\displaystyle \int e^{\tan^{-1}x}\left[\frac{1+x+x^{2}}{1+x^{2}}\right]dx=xe^{\tan ^{-1} x}+c$$
    Hence, option 'B' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now