Self Studies

Integrals Test - 26

Result Self Studies

Integrals Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of integral  $$\displaystyle \int_{0}^{\infty }\frac{x\log x}{(1+x^2)^2}  \: dx$$ is
    Solution
    $$ \displaystyle  I=\int_{0}^{\infty }\frac{x\log xdx}{(1+x^2)^2}$$
    Let $$x=\frac{1}{t}$$
    $$\displaystyle I=\int_{0}^{\infty }\frac{(\frac{1}{t})\log (\frac{1}{t}) (-\frac{1}{t^2})dt}{(1+(\frac{1}{t^2}))^2}$$
    $$\displaystyle I=-\int_{0}^{\infty }\frac{t\log t}{(1+t^2)^2}dt=-I$$
    or $$I=0$$
  • Question 2
    1 / -0
    Let $$\displaystyle \frac{{df(x)}}{{dx}} = \frac{{{e^{\sin x}}}}{x}, x>0$$. If $$\displaystyle \int_1^4 {\frac{{3{e^{\sin {x^3}}}}}{x}dx = f(k) - f(1)} $$ then one of the possible values of k is
    Solution

    $$\displaystyle \dfrac{df(x)}{dx}=\displaystyle \dfrac{e^{sin  x}}{x} ,  x  >  0,  \int_1^4  \dfrac{3e^{sin x^3}}{x}dx=f(k)-f(1)$$
    substitute  $$x^3=p$$
    $$dp=3x^2  dx$$
    limit of p will be rom $$1   \rightarrow  64$$  as of  x  was  $$1  \rightarrow  4$$
    So, $$\displaystyle \int_1^{64} \dfrac{3e^{sin  p}}{x} \cdot  \dfrac{dp}{3x^2}=\int_1^{64} \dfrac{e^{sin  p}}{p}dp=\int_1^{64}df(p)=f(64)-f(1)$$

  • Question 3
    1 / -0
    Let $$f(0) = 0$$ and $$\displaystyle \int_{0}^{2}{f}'(2t)e^{f(2t)} \:dt=5$$.
    Then the value of $$f (4)$$ is?
    Solution
    We have $$\displaystyle \int_{0}^{2 }{f}'(2t)e^{f(2t)}dt=5$$

    Substitute $$e^{f(2t)}=y$$

    $$\therefore 2{f}'(2t)e^{f(2t)}dt=dy$$

    $$\therefore \dfrac{1}{2} \displaystyle \int_{e^{f(0)}}^{e^{f(4)}} dy=5$$

    or $$\displaystyle \int_{e^{f(0)}}^{e^{f(4)}} dy=10$$

    or $$e^{f(4)}-e^{f(0)}=10$$

    or $$e^{f(4)}=10+1=11$$

    or $$f(4)=\log 11$$
  • Question 4
    1 / -0

    $$\displaystyle \int_{-3\pi/2}^{-\pi/2}[(x+\pi)^{3}+\cos^{2}(x+3\pi)]dx=$$
    Solution
    Let $$I=\int { \left( x+\pi  \right) ^{ 3 }dx } =\cfrac { 1 }{ 4 } \left( x+\pi  \right) ^{ 4 }$$
    And $$J=\int { cos^{ 2 }\left( x+3\pi  \right) dx } =\int { cos^{ 2 }xdx } \\ =\int { \left( \cfrac { 1 }{ 2 } cos2x+\cfrac { 1 }{ 2 }  \right) dx } =\cfrac { 1 }{ 2 } \int { cos2xdx } +\cfrac { 1 }{ 2 } \int { dx } \\ =\cfrac { 1 }{ 4 } sin2x+\cfrac { x }{ 2 } $$
    Therefore,
    $$\int _{ -\cfrac { 3\pi  }{ 2 }  }^{ -\cfrac { \pi  }{ 2 }  }{ \left[ \left( x+\pi  \right) ^{ 3 }+cos^{ 2 }\left( x+3\pi  \right)  \right] dx } \\ =\left[ \cfrac { 1 }{ 4 } \left( x+\pi  \right) ^{ 4 }+\cfrac { 1 }{ 4 } sin2x+\cfrac { x }{ 2 }  \right] _{ -\cfrac { 3\pi  }{ 2 }  }^{ -\cfrac { \pi  }{ 2 }  }=\cfrac { \pi  }{ 2 } $$
  • Question 5
    1 / -0

    The value of the integral $$\displaystyle \int_{0}^{1}\frac{1}{(x^{2}+1)^{3/2}} dx$$ is
    Solution
    Let $$I=\int { \cfrac { 1 }{ \left( x^{ 2 }+1 \right) ^{ \cfrac { 3 }{ 2 }  } } dx } $$
    Substituting $$x=tant\Rightarrow dx=sec^{ 2 }tdt$$, we get
    $$I=\int { cot\left( t \right) dt } =sin\left( t \right) =sin\left( tan^{ -1 }x \right) =\cfrac { x }{ \sqrt { x^{ 2 }+1 }  } $$
    Therefore,
    $$\int _{ 0 }^{ 1 }{ \cfrac { 1 }{ \left( x^{ 2 }+1 \right) ^{ \cfrac { 3 }{ 2 }  } } dx } =\left[ \cfrac { x }{ \sqrt { x^{ 2 }+1 }  }  \right] _{ 0 }^{ 1 }=\cfrac { 1 }{ \sqrt { 2 }  } $$
  • Question 6
    1 / -0
    If $$\displaystyle \int^{x}_{\log 2} \dfrac{1}{\sqrt{e^{x}-1}}dx = \dfrac{\pi}{6}$$

    then $$x $$ is equal to?
    Solution
    Let $$\displaystyle I=\int { \cfrac { 1 }{ \sqrt { e^{ x }-1 }  } dx } $$
    Substituting $$t=e^{ x }\Rightarrow dt=e^{ x }dx$$, we get
    $$\displaystyle I=\int { \cfrac { 1 }{ t\sqrt { t-1 }  } dt } $$
    Again substituting $$u=t-1\Rightarrow du=dt$$, we get
    $$\displaystyle I=\int { \cfrac { 1 }{ \sqrt { u } \left( u+1 \right)  } du } $$
    now substituting $$s=\sqrt { u } \Rightarrow ds=\cfrac { 1 }{ 2\sqrt { u }  } du$$, we get
    $$\displaystyle I=2\int { \cfrac { 1 }{ s^{ 2 }+1 } ds } \\ =2tan^{ -1 }s=2tan^{ -1 }\sqrt { u } =2tan^{ -1 }\sqrt { t-1 } =2tan^{ -1 }\sqrt { e^{ x }-1 } $$
    Therefore,
    $$\displaystyle\int _{ \log { 2 }  }^{ x }{ 2tan^{ -1 }\left( \sqrt { e^{ x }-1 }  \right)  } =\cfrac { \pi  }{ 6 } \Rightarrow \left[ 2tan^{ -1 }\left( \sqrt { e^{ x }-1 }  \right)  \right] _{ \log { 2 }  }^{ x }=\cfrac { \pi  }{ 6 } $$
    $$\therefore x=\log{4}$$

  • Question 7
    1 / -0
    Let $$\displaystyle \frac{d}{dx}F\left ( x \right )=\frac{e^{\sin x}}{x},x> 0.$$ If $$\displaystyle \int_{1}^{4}\frac{2e^{\sin x^{2}}}{x}dx=F\left ( k \right )-F\left ( 1 \right )$$ then one of the possible values of $$\displaystyle k$$ is
    Solution
    $$\int _{ 1 }^{ 4 }{ \cfrac { 2{ e }^{ \sin { { x }^{ 2 } } } }{ x } dx } =F\left( k \right) -F\left( 1 \right) $$
    Substitute $${ x }^{ 2 }=t\Rightarrow 2xdx=dt$$
    $$\int _{ 1 }^{ 16 }{ 2\cfrac { { e }^{ \sin { t } } }{ t } \cfrac { dt }{ 2 } } =F\left( k \right) -F\left( 1 \right) \\ \Rightarrow \int _{ 1 }^{ 16 }{ \cfrac { { e }^{ \sin { t } } }{ t } dt } =F\left( k \right) -F\left( 1 \right) \\ \Rightarrow { \left[ F\left( t \right) \right] }_{ 1 }^{ 16 }=F\left( k \right) -F\left( 1 \right) \\ \Rightarrow F\left( 16 \right) -F\left( 1 \right) =F\left( k \right) -F\left( 1 \right) \\ \Rightarrow k=16$$
  • Question 8
    1 / -0
    If $$\displaystyle \int_{0}^{1}xe^{x^{2}}dx= \lambda \int_{0}^{1}e^{x^{2}}dx$$ then $$\lambda $$
    Solution
    For $$x\in(0,1), x e^{x^2}< e^{x^2}$$
    $$\Rightarrow \displaystyle \int_0^1xe^{x^2}<\int_0^1e^{x^2}dx$$
    Also $$x e^{x^2} >0    \forall x\in(0,1)$$
    $$\Rightarrow \displaystyle \int_0^1xe^{x^2} >0$$
    Hence $$\lambda \in(0,1)$$
  • Question 9
    1 / -0
    The value of $$\displaystyle \int_{1}^{2}\left [ f\left \{ g\left ( x \right ) \right \} \right ]^{-1}.{f}'\left \{ g\left ( x \right ) \right \}.{g}'\left ( x \right )dx,$$ where $$\displaystyle g\left ( 1 \right )=g\left ( 2 \right ),$$ is equal to?
    Solution
    Let $$I=\int _{ 1 }^{ 2 } \left[ f\left\{ g\left( x \right)  \right\}  \right] ^{ -1 }.{ f }'\left\{ g\left( x \right)  \right\} .{ g }'\left( x \right) dx$$

    Substitute $$\left[ f\left\{ g\left( x \right)  \right\}  \right] =t\Rightarrow { f }'\left\{ g\left( x \right)  \right\} .{ g }'\left( x \right) dx=dt$$

    $$\displaystyle \therefore I=\int _{ f\left( g\left( 1 \right)  \right)  }^{ f\left( g\left( 2 \right)  \right)  }{ tdt } ={ \left[ \frac { { t }^{ 2 } }{ 2 }  \right]  }_{ f\left( g\left( 1 \right)  \right)  }^{ f\left( g\left( 2 \right)  \right)  }=0\\ \because g\left( 1 \right) =g\left( 2 \right) $$
  • Question 10
    1 / -0
    The value of  $$\displaystyle \int_{0}^{\pi /4}\frac{\sec x}{\left ( \sec x+\tan x \right )^{2}}dx$$ is 
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{ \dfrac { \pi  }{ 4 }  }{ \frac { \sec { x }  }{ { \left( \sec { x } +\tan { x }  \right)  }^{ 2 } }  } dx$$

    Multiply numerator and denominator by $$\cos ^{ 2 }{ x } $$, we get

    $$\displaystyle I=\int _{ 0 }^{ \dfrac { 1 }{ \sqrt { 2 }  }  }{ \dfrac { 1 }{ { \left( u+1 \right)  }^{ 2 } }  } du=\left[ \dfrac { -1 }{ u+1 }  \right] _{ 0 }^{ \dfrac { 1 }{ \sqrt { 2 }  }  }$$

    $$\displaystyle =-\dfrac { 1 }{ \dfrac { 1 }{ \sqrt { 2 }  } +1 } $$

    $$=\dfrac { -\sqrt { 2 }  }{ 1+\sqrt { 2 }  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now