Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \int_{\pi /4}^{3\pi /4}\frac{dx}{1+\cos x}$$ is equal to

  • Question 2
    1 / -0

    If $$I_1 = \displaystyle \int_x^1 \frac{1}{1 + t^2} dt$$ and $$I_2 \displaystyle = \int_1^{1 / x}\frac{1}{1+ t^2}dt$$ for $$x > 0$$, then

  • Question 3
    1 / -0

    If $$\displaystyle f\left ( \frac{1}{x} \right )+x^{2}f\left ( x \right )=0$$ for $$x> 0,$$ 

    and $$\displaystyle I=\int_{1/x}^{x}f\left ( z \right )dz, \frac{1}{2}\leq x\leq 2$$ 
    then $$\displaystyle I$$ is?

  • Question 4
    1 / -0

    $$ \displaystyle \int_{\sin \theta }^{\cos \theta }f(x \tan \theta )dx\left ( where \theta \neq \frac{n\pi}{2} ,n\epsilon I\right )$$ is equal to

  • Question 5
    1 / -0

    Suppose that F(x) is an anti-derivative of $$\displaystyle f(x)=\frac{\sin x}{x}$$, where $$x>0$$.

    Then $$\displaystyle \int_{1}^{3}\dfrac{\sin2x}{x} \:dx$$ can be expressed as?

  • Question 6
    1 / -0

    If $$\displaystyle f\left ( x \right )=\int_{-1}^{1}\frac{\sin x}{1+t^{2}}dt$$ then $$\displaystyle {f}'\left ( \frac{\pi }{3} \right )$$ is

  • Question 7
    1 / -0

    The solution for x of the equation $$\displaystyle \int_{\sqrt{2}}^{x}\frac{dt}{t\sqrt{t^{2}-1}}=\frac{\pi }{2}$$ is

  • Question 8
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{2^{x+1}-3^{x-1}}{6^{x}}dx$$

  • Question 9
    1 / -0

    $$\displaystyle \int_{1}^{2}\left ( x+\frac{1}{x} \right )^{3/2}\frac{x^{2}-1}{x^{2}}dx$$

  • Question 10
    1 / -0

    The value of$$\displaystyle \int_{1}^{2}\frac{\cos \left ( \log x \right )}{x}dx$$  is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now