Self Studies

Integrals Test - 28

Result Self Studies

Integrals Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle I_{1}= \int_{-4}^{-5}e^{\left ( x +5 \right )^{2}}dx$$ and $$\displaystyle I_{2}= 3\int_{{1}/{3}}^{{2}/{3}}e^{\left ( 3x -2 \right )^{2}}dx$$ 

    then $$I_{1}+I_{2}$$ equals?
    Solution
    $$I_{ 2 }=3\int _{ \frac { 1 }{ 3 }  }^{ \frac { 2 }{ 3 }  } e^{ \left( 3x-2 \right) ^{ 2 } }dx$$
    $$\displaystyle x=\frac { -y-3 }{ 3 } $$ 
    $$\displaystyle dx=-\frac { dy }{ 3 } $$ 
    $$\displaystyle \Rightarrow I_{ 2 }=3\int _{ \frac { 1 }{ 3 }  }^{ \frac { 2 }{ 3 }  } e^{ \left( 3x-2 \right) ^{ 2 } }dx=-\int _{ -4 }^{ -5 } e^{ \left( y+5 \right) ^{ 2 } }dx=-I_{ 1 }$$ 
    $$\displaystyle \Rightarrow I_{ 1 }+I_{ 2 }=0$$
  • Question 2
    1 / -0
    Evaluate the integrals $$\displaystyle \int_{a}^{b}\frac{\log x}{x}dx$$
    Solution
    Substitute $$\displaystyle \log x=t \therefore \left ( 1/x \right )dx=dt$$ and adjust the limits
    $$\displaystyle \therefore I= \int t\:dt=\left [ \frac{1}{2}t^{2} \right ]_{\log a}^{\log b}$$
    $$\displaystyle \therefore I= \frac{1}{2}\left [ \left ( \log b \right )^{2}-\left ( \log a \right )^{2} \right ]$$
    $$\displaystyle = \frac{1}{2}\left [ \left ( \log b+\log a \right )\left ( \log b-\log a \right ) \right ]$$
    $$\displaystyle \therefore I= \frac{1}{2} \log\left ( ab\right )\cdot \log \frac{b}{a}.$$

  • Question 3
    1 / -0
    If $$f\left ( a+x \right )= f\left ( x \right )$$ , then $$\forall$$ $$ a> 0,  n\epsilon  N$$ the value of $$\displaystyle \int_{0}^{n a}f\left ( x \right )dx$$  equals ?
    Solution
    $$I=\displaystyle \int _{ 0}^{ na }{ f\left( x \right) dx } $$
    Substitute $$x=a+t\Rightarrow dx=dt$$
    $$I=\displaystyle \int _{ 0 }^{ \left( n-1 \right) a }{ f\left( a+t \right) dt } \\ =\left( n-1 \right) \displaystyle \int _{ 0 }^{ a }{ f\left( a+t \right) dt } \\ =\left( n-1 \right) \displaystyle \int _{ 0 }^{ a }{ f\left( a+x \right) dx } =\left( n-1 \right) \displaystyle \int _{ 0 }^{ a }{ f\left( x \right) dx } $$
  • Question 4
    1 / -0
    Given $$\displaystyle \int _{ 1 }^{ 2 }{ { e }^{ { x }^{ 2 } } } dx=a,$$ the value of $$\displaystyle \int _{ e }^{ { e }^{ 4 } }{ \sqrt { \ln { \left( x \right)  }  } dx } $$ is?
    Solution
    Given $$\displaystyle \int _{ 1 }^{ 2 }{ { e }^{ { x }^{ 2 } } } dx=a,$$ 
    Let $$I=\displaystyle \int _{ e }^{ { e }^{ 4 } }{ \sqrt { \ln { \left( x \right)  }  } dx } $$
    Put $$\displaystyle \ln { \left( x \right)  } ={ t }^{ 2 }\Rightarrow \frac { 1 }{ x } dx=2tdt$$
    $$\therefore I=\displaystyle \int _{ 1 }^{ 2 }{ { e }^{ { t }^{ 2 } } } .{ 2t }^{ 2 }dt={ \left( t{ e }^{ { t }^{ 2 } } \right)  }_{ 1 }^{ 2 }-\displaystyle \int _{ 1 }^{ 2 }{ { e }^{ { t }^{ 2 } } } dt={ 2e }^{ 4 }-e-a.$$
  • Question 5
    1 / -0
    $$\displaystyle \int_{0}^{\pi /2}\frac{dx}{\sin x}$$equals
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \dfrac { 1 }{ sin{ x } } dx } =\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \csc { x }  } dx$$
    Multiply numerator and denominator by $$cot{ x }+\csc { x } $$, we get
    $$\displaystyle \therefore I=-\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \dfrac { -cot{ x }\csc { x } -\csc ^{ 2 }{ x } dx }{ cot{ x }+\csc { x }  } dx } $$
    Substitute $$t=cot{ x }+\csc { x } \Rightarrow dt=\left( -\csc ^{ 2 }{ x } -cot{ x }\csc { x }  \right) dx$$
    $$\displaystyle \therefore I=-\int _{ 0 }^{ 1 }{ \dfrac { 1 }{ t }  } dt=\left[ -\log { t }  \right] _{ 0 }^{ 1 }=0$$
  • Question 6
    1 / -0
    The value of $$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{\left ( x+1 \right )\sqrt{x^{2}+2x}}$$ is
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{ 1 }{ \frac { 1 }{ \left( x+1 \right) \sqrt { { x }^{ 2 }+2x }  } dx } =\int _{ 0 }^{ 1 }{ \frac { 1 }{ \left( x+1 \right) \sqrt { { \left( x+1 \right)  }^{ 2 }-1 }  } dx } $$
    Substitute $$u=x+1\Rightarrow du=dx$$
    $$\displaystyle\therefore I=\int _{ 1 }^{ 2 }{ \frac { 1 }{ u\sqrt { { u }^{ 2 }-1 }  } du } $$
    Substitute $$\displaystyle s=\sqrt { { u }^{ 2 }-1 } \Rightarrow ds=\frac { u }{ \sqrt { { u }^{ 2 }-1 }  } du$$
    $$\displaystyle\therefore I=\int _{ 0 }^{ \sqrt { 3 }  }{ \frac { 1 }{ { s }^{ 2 }+1 } ds } ={ \left[ \tan ^{ -1 }{ s }  \right]  }_{ 0 }^{ \sqrt { 3 }  }=\frac { \pi  }{ 3 } $$
  • Question 7
    1 / -0
    Value of $$\displaystyle \int_{0}^{\pi /4}\left ( \sqrt{\tan x}-\sqrt{\cot x} \right )\: dx$$ is
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{ \dfrac { \pi  }{ 4 }  }{ \left( \sqrt { \tan { x }  } -\sqrt { cot{ x } }  \right)  } dx=-\int _{ 0 }^{ \dfrac { \pi  }{ 4 }  }{ \frac { cos{ x }-sin{ x } }{ \sqrt { cos{ x }sin{ x } }  } dx } $$
    Substitute $$\left( sin{ x+cos{ x } } \right) =t\Rightarrow 2sin{ x }cos{ x }={ t }^{ 2 }-1$$
    $$\displaystyle \therefore I=\sqrt { 2 } \int _{ 1 }^{ \sqrt { 2 }  }{ \frac { dt }{ \sqrt { { t }^{ 2 }-1 }  }  } \\ =\left[ \sqrt { 2 } \log { \left( t+\sqrt { { t }^{ 2 } } -1 \right)  }  \right] _{ 0 }^{ \sqrt { 2 }  }\\ =\sqrt { 2 } \log { \left( \sqrt { 2 } -1 \right)  } $$
  • Question 8
    1 / -0
    Value of $$\displaystyle \int_{0}^{2a}\dfrac{x^{3/2}}{\sqrt{2a-x}} dx$$ is
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{ 2a }{ \frac { { x }^{ \frac { 3 }{ 2 }  } }{ \sqrt { 2a-x }  } dx } $$

    Substitute $$\displaystyle u=\sqrt { x } \Rightarrow du=\frac { 1 }{ 2\sqrt { x }  } dx$$ 

    $$\displaystyle I=2\int _{ 0 }^{ \sqrt { 2a }  }{ \frac { { u }^{ 4 } }{ \sqrt { 2a-{ u }^{ 2 } }  } du } $$

    Substitute $$u=\sqrt { 2a } \sin { t } \Rightarrow du=\sqrt { 2a } \cos { t } dt$$
    $$\displaystyle I=2\sqrt { 2a } \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \left( 2\sqrt { 2 } { a }^{ \frac { 3 }{ 2 }  }\sin ^{ 4 }{ t }  \right) dt } =8{ a }^{ 2 }\int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ \sin ^{ 4 }{ t } dt } $$

    Using reduction formulae
    $$\displaystyle \int { \sin ^{ m }{ x } dx } =\frac { -\cos { x } \sin ^{ m-1 }{ x }  }{ m } +\frac { m-1 }{ m } \int { \sin ^{ m-2 }{ x } dx } $$

    $$\displaystyle I={ \left[ -2{ a }^{ 2 }\sin ^{ 3 }{ t } \cos { t }  \right]  }_{ 0 }^{ \frac { \pi  }{ 2 }  }+6{ a }^{ 2 }\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \sin ^{ 2 }{ t } dt } $$

    $$\displaystyle =0+6{ a }^{ 2 }\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \left( \frac { 1 }{ 2 } -\frac { 1 }{ 2 } \cos { 2t }  \right) dt } $$

    $$\displaystyle ={ \left[ 3{ a }^{ 2 }t-3{ a }^{ 2 }\sin { t } \cos { t }  \right]  }_{ 0 }^{ \frac { \pi  }{ 2 }  }=\frac { 3\pi { a }^{ 2 } }{ 2 } $$
  • Question 9
    1 / -0
    If $$f\left ( x \right )= A\sin \left ( \dfrac {\pi x}{2} \right )\: +\: B,f{}'\left ( \dfrac 12  \right )= \sqrt{2}$$ and $$\displaystyle \int_{0}^{1}f\left ( x \right )dx= \displaystyle \frac{2A}{\pi }$$, 
    then the constants $$A$$ and $$B$$ are
    Solution
    $$f(x)=A\sin{(\pi x/2)}+B$$

    $$\implies f^{'}(x)=\dfrac{A\pi}{2}\cos{(\pi x/2)}$$

    $$\implies f^{'}(1/2)=\dfrac{A\pi}{2}\cos{(\pi/4)=\dfrac{A\pi}{2}\dfrac{1}{\sqrt{2}}}$$

    $$\implies\sqrt{2}=\dfrac{A\pi}{2}\dfrac{1}{\sqrt{2}}$$

    Hence, $$ A=\dfrac{4}{\pi}$$

    $$\displaystyle\int_{0}^{1} f(x)dx=\left[-\dfrac{2A}{\pi}\cos{(\pi x/2)}+Bx\right]_{0}^{1}$$

    $$\implies\dfrac{2A}{\pi}=\dfrac{2A}{\pi}+B$$

    Hence, $$B=0$$

    Hence, answer is option-(D).
  • Question 10
    1 / -0
    The value of $$\displaystyle \int_{a}^{b}\displaystyle \frac{\log x}{x}\: dx$$ is
    Solution
    $$\displaystyle I=\int _{ a }^{ b }{ \frac { \log { x }  }{ x }  } dx={ \left[ \log { x } .\log { x }  \right]  }_{ a }^{ b }-\int _{ a }^{ b }{ \frac { \log { x }  }{ x }  } dx\\ \Rightarrow 2I={ \left[ { \left( \log { x }  \right)  }^{ 2 } \right]  }_{ a }^{ b }={ \left( \log { b }  \right)  }^{ 2 }-{ \left( \log { a }  \right)  }^{ 2 }$$
    $$\displaystyle \Rightarrow I=\frac { 1 }{ 2 } \left( \log { b } +\log { a }  \right) \left( \log { b } -\log { a }  \right) =\frac { 1 }{ 2 } \log { ab } \log { \frac { b }{ a }  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now