Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Suppose that F(x) is an antiderivative of f(x)$$\displaystyle =\frac{\sin x}{x},x> 0$$ then $$\displaystyle \int_{1}^{3}\frac{\sin 2x}{x}$$ can be expressed as

  • Question 2
    1 / -0

    If $$0 < \alpha < 1$$ and $$\displaystyle I=\int _{-1}^{1} \frac{dx}{\sqrt{1-2\alpha x+\alpha^{2}}} $$ then $$I$$ equals

  • Question 3
    1 / -0

    $$\displaystyle \int_{1/2}^{2}\frac{1}{x}\sin \left ( x-\frac{1}{x} \right )dx$$ has the value equal to 

  • Question 4
    1 / -0

    The value of the definite integral $$\displaystyle \int_{1}^{\infty}\left ( e^{x+1}+e^{3-x} \right )^{-1}dx$$ is

  • Question 5
    1 / -0

    $$\displaystyle \int ^{\displaystyle \frac{3 \pi}{10}}_{\displaystyle \frac{\pi}{5}} \frac{sin x}{sin x + cos x}dx $$ is equal to 

  • Question 6
    1 / -0

    $$\displaystyle \int_1^{\sqrt 3}\frac {dx}{1+x^2}$$ equals

  • Question 7
    1 / -0

    Directions For Questions

    Let $$\displaystyle I_{1}=\int_{0}^{1}(1-x^{2})^{1/3} dx$$  &  $$\displaystyle I_{2}=\int_{0}^{1}(1-x^{3})^{1/2} dx$$

    On the basis of above information, answer the following questions: 

    ...view full instructions

    $$I_{1}$$ is equal to

  • Question 8
    1 / -0

    Evaluate $$\displaystyle \int_{0}^{\pi /2} \frac{dx}{2+\sin 2x}$$

  • Question 9
    1 / -0

    $$\displaystyle \int_{\tfrac{1}{\sqrt{3}}}^{0}\dfrac{dx}{\left ( 2x^{2}+1 \right )\sqrt{x^{2}+1}}$$

  • Question 10
    1 / -0

    $$\int \dfrac {1}{x^{2} (x^{4} + 1)^{3/4}}dx$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now