Self Studies

Integrals Test - 32

Result Self Studies

Integrals Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is $$\displaystyle \int \dfrac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} dx$$ equal to?
    Solution
    $$I=\displaystyle \int \dfrac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} dx$$ 
    $$=\displaystyle \int \dfrac{x^4 - 1}{x^3 \sqrt{x^2 + 1 + \dfrac{1}{x^2}}} dx$$
    $$=\displaystyle \int \dfrac{x - \dfrac{1}{x^3}}{\sqrt{x^2 + 1 + \dfrac{1}{x^2}}} dx$$

    Put   $$x^2 + 1 + \dfrac{1}{x^2}=t$$
    $$\therefore \left(2x-\dfrac{2}{x^3}\right)dx=dt$$

    $$\therefore \left(x-\dfrac{1}{x^3}\right)dx=\dfrac{dt}{2}$$

    $$\therefore I=\displaystyle \int \dfrac{dt}{2\sqrt t}$$

    $$=\sqrt t +C$$

    $$=\sqrt{x^2 + 1 + \dfrac{1}{x^2}}+C$$

    Answer is option (C)
  • Question 2
    1 / -0
    The value of $$\displaystyle\int _{ 0 }^{ { x }/{ 4 } }{ \dfrac { \sec { x }  }{ { \left( \sec { x } +\tan { x }  \right)  }^{ 2 } } dx } $$ is
    Solution
    $$I=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ \cfrac { \sec { x }  }{ { \left( \sec { x } +\tan { x }  \right)  }^{ 2 } }  } dx$$

    $$=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ \cfrac { { 1 }/{ \cos { x }  } }{ { \left[ \cfrac { 1 }{ \cos { x }  } +\cfrac { \sin { x }  }{ \cos { x }  }  \right]  }^{ 2 } }  } dx$$

    $$=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ \cfrac { { \cos ^{ 2 }{ x }  }/{ \cos { x }  } }{ { \left( 1+\sin { x }  \right)  }^{ 2 } }  } dx$$
    $$I=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ { \left( 1+\sin { x }  \right)  }^{ -2 } } \cos { x } dx$$
    Take $$1+\sin x=t \implies \cos x dx=dt$$
    When $$x=0, t=1$$ and $$x=\dfrac{\pi}{4}, t=1+\dfrac{1}{\sqrt{2}}$$

    $$\therefore \quad I=\int_{1}^{1+\frac{1}{\sqrt{2}}} t^{-2}\ dt$$
    $$\therefore \quad I=\left|\dfrac{t^{-1}}{-1}\right|_{1}^{1+\frac{1}{\sqrt{2}}}$$

    $$=-\left[ \cfrac { 1 }{ 1+\frac { 1 }{ \sqrt { 2 }  }  } -1 \right] $$
    $$=-\cfrac { \sqrt { 2 }  }{ \sqrt { 2 } +1 } +1$$$$=\cfrac { -\sqrt { 2 } +\sqrt { 2 } +1 }{ \sqrt { 2 } +1 } =\cfrac { 1 }{ \sqrt { 2 } +1 } $$
    $$=\cfrac { 1 }{ \sqrt { 2 } +1 } \ast \cfrac { \sqrt { 2 } -1 }{ \sqrt { 2 } -1 } =\cfrac { \sqrt { 2 } -1 }{ 2-1 } $$
    $$=\sqrt { 2 } -1$$
    $$\therefore $$ None of these is correct option
  • Question 3
    1 / -0
    What is $$\displaystyle \int_0^1 {\frac{\tan^{-1}x}{1 + x^2} dx}$$ equal to ?
    Solution
    Let $$I=\displaystyle \int _{ 0 }^{ 1 } \dfrac { {\tan^{ -1 } }x }{  { 1+x^{ 2 } }  } dx$$

    Let, $$y={ {\tan^{ -1 } }x }$$ $$\Rightarrow dy=\dfrac { 1 }{  { 1+x^{ 2 } }  } dx$$
    Now for $$ x=1, y=\dfrac { \pi  }{ 4 } $$ and for $$x=0, y=0$$
    Putting the values in the integral we have,

    $$I=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ y.dy }$$

     $$= { \left[\dfrac { y^{ 2 } }{ 2 } \right] }_{ 0 }^{ \frac { \pi  }{ 4 }  }$$

    $$ =\dfrac { \pi ^{ 2 } }{ 32 } $$ 
    Hence, D is correct.
  • Question 4
    1 / -0
    If $$I=\displaystyle\int _{ { 1 }/{ \pi  } }^{ \pi  }{ \dfrac { 1 }{ x } \cdot \sin { \left( x-\dfrac { 1 }{ x }  \right)  } dx } $$, then $$I$$ is equal to
    Solution

    $$\displaystyle{I=\int _{ \frac { 1 }{ \pi  }  }^{ \pi  }{ \dfrac { 1 }{ x }  } .\sin { \left( x-\dfrac { 1 }{ x }  \right)  } dx.....(i)}$$

    Let $$t=\dfrac { 1 }{ x } $$

    $$dt=-\dfrac { 1 }{ { x }^{ 2 } } dx\\ dx={ -x }^{ 2 }dt$$

    Substituting in $$(i)$$

    $$\displaystyle{I=\int _{ \pi  }^{ \frac { 1 }{ \pi  }  }{ \dfrac { 1 }{ x }  } .\sin { \left( x-\dfrac { 1 }{ x }  \right)  } (-x^{ 2 })dt\\ \\ I=-\int _{ \pi  }^{ \frac { 1 }{ \pi  }  }{ x } .\sin { \left( x-\dfrac { 1 }{ x }  \right)  } dt\\ I=-\int _{ \pi  }^{ \frac { 1 }{ \pi  }  }{ \dfrac { 1 }{ t }  } .\sin { \left( \dfrac { 1 }{ t } -t \right)  } dt\\ I=-\int _{ \pi  }^{ \frac { 1 }{ \pi  }  }{ \dfrac { 1 }{ t }  } .\sin { \left( -(t-\dfrac { 1 }{ t } ) \right)  } dt}$$

    using $$\sin { (-x)=-\sin { x }  } $$

    $$\displaystyle{I=\int _{ \pi  }^{ \frac { 1 }{ \pi  }  }{ \dfrac { 1 }{ t }  } .\sin { \left( t-\dfrac { 1 }{ t }  \right)  } dt}$$

    Using $$\displaystyle{\int _{ a }^{ b }{ f\left( x \right) dx=-\int _{ b }^{ a }{ f\left( x \right) dx }  } }$$ and changing the variable from $$t$$ to $$x$$

    $$\displaystyle{I=-\int _{ \frac { 1 }{ \pi  }  }^{ \pi  }{ \dfrac { 1 }{ x }  } .\sin { \left( x-\dfrac { 1 }{ x }  \right)  } dx.....(ii)}$$

    Adding $$(i)$$ and $$(ii)$$

    $$\displaystyle{2I=\int _{ \frac { 1 }{ \pi  }  }^{ \pi  }{ \dfrac { 1 }{ x }  } .\sin { \left( x-\dfrac { 1 }{ x }  \right)  } dx-\int _{ \frac { 1 }{ \pi  }  }^{ \pi  }{ \dfrac { 1 }{ x }  } .\sin { \left( x-\dfrac { 1 }{ x }  \right)  } dx=0\\ \Rightarrow I=0}$$

    So option $$(A)$$ is correct.

  • Question 5
    1 / -0
    $$\int { \left( \cfrac { 4{ e }^{ x }-25 }{ 2{ e }^{ x }-5 }  \right)  } dx=Ax+B\log { \left| 2{ e }^{ x }-5 \right|  } +c$$, then
    Solution
    Given : $$\displaystyle \int { \left( \cfrac { 4{ e }^{ x }-25 }{ 2{ e }^{ x }-5 }  \right)  } dx=Ax+B\log { \left| 2{ e }^{ x }-5 \right|  } +c$$

    $$\implies \displaystyle \int { \left( \cfrac { 10 e^{x} -6{ e }^{ x }-25 }{ 2{ e }^{ x }-5 }  \right)  } dx=Ax+B\log { \left| 2{ e }^{ x }-5 \right|  } +c$$

    $$\implies \displaystyle \int {\left(5 - \cfrac { 6{e}^{x}}{ 2{ e }^{ x }-5 }  \right)  } dx=Ax+B\log { \left| 2{ e }^{ x }-5 \right|  } +c$$

    $$\implies \displaystyle \int 5. dx - 3\int {\left(\cfrac { 2{e}^{x}}{ 2{ e }^{ x }-5 }  \right)  } dx=Ax+B\log { \left| 2{ e }^{ x }-5 \right|  } +c$$

    $$\implies 5x -3 \log|2e^{x}-5|+c=Ax+B\log|2e^{x}-5|+c$$
    Equating the like terms we get
    $$A=5$$ and $$B=-3$$
    Hence, option B is correct. 
  • Question 6
    1 / -0
    If $$\displaystyle \int { \cfrac { f(x) }{ \log { (\sin { x } ) }  }  } dx=\log { \left[ \log { \sin { x }  }  \right]  } +c$$, then $$f(x)=$$........
    Solution
    Here, $$\displaystyle \int { \dfrac { f(x) }{ \log (\sin x) } dx } = \log (\log (\sin x))+c$$

    R.H.S.=$$\log(\log (\sin x))$$

    Differentiating the R.H.S

    $$\Rightarrow$$ $$\dfrac { 1 }{ \log (\sin x) } \times \dfrac { 1 }{ \sin x } \times \cos x=\dfrac { \cot x }{ \log (\sin x) }$$

    $$ \Rightarrow f(x)=\cot x$$
  • Question 7
    1 / -0
    If $$I_n = \int_0^{\pi/4} tan^n \theta d \theta$$, where n is a positive integer, then $$n(I_{n-1} + I_{n +1})$$ is equal to
    Solution
    $${ I }_{ n }=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ { \left( { \tan { x }  } \right)  }^{ n }dx } $$
    $$ { I }_{ n }^{  }=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ { \left( { \tan { x }  } \right)  }^{ n-2 }\left( { \left( \sec { x }  \right)  }^{ 2 }-1 \right) dx } $$
    $$ { I }_{ n }=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ { \left( { \tan { x }  } \right)  }^{ n-2 } } .{ \left( \sec { x }  \right)  }^{ 2 }dx-\int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ { \left( { \tan { x }  } \right)  }^{ n-2 } } dx$$
    $$ Let\ \ J=\displaystyle \int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ { \left( { \tan { x }  } \right)  }^{ n-2 } } .{ \left( \sec { x }  \right)  }^{ 2 }dx$$
    $$ Let\ \ z=tanx$$
    $$ \Rightarrow dz={ \left( \sec { x }  \right)  }^{ 2 }dx$$
    $$ J=\displaystyle \int _{ 0 }^{ 1 }{ { z }^{ n-2 }dz } $$
    $$ J=\frac { 1 }{ n-1 } $$
    $$ { I }_{ n }=J-{ I }_{ n-2 }^{  }$$
    $$ { I }_{ n }=\frac { 1 }{ n-1 } -{ I }_{ n-2 }^{  }$$
    $$ \left( n-1 \right) { I }_{ n }+\left( n-1 \right) { I }_{ n-2 }^{  }=1$$
    $$ n\rightarrow n+1$$
    $$ \Rightarrow n{ I }_{ n+1 }^{  }+n{ I }_{ n-1 }^{  }=1$$

  • Question 8
    1 / -0
    The solution of the equation $$\dfrac { dy }{ dx } =\dfrac { x\left( 2\log { x } +1 \right)  }{ \sin { y } +y\cos { y }  } $$ is
    Solution
    Given equation is $$\dfrac {dy}{dx}=\dfrac {x(2\log x+1)}{\sin y+y \cos y}$$
    Therefore, $$\left( y\cos { y } +\sin { y }  \right) dy=\left( 2x\log { x } +x \right) dx$$
    $$\Rightarrow y\sin { y } -\displaystyle\int { \sin { y } dy } +\displaystyle\int { \sin { y } dx } ={ x }^{ 2 }\log { x } -\displaystyle\int { { x }^{ 2 }\cdot \dfrac { 1 }{ x } dx } +\displaystyle\int { xdx } +c$$
    $$\Rightarrow  y\sin { y } ={ x }^{ 2 }\log { x } +c$$
  • Question 9
    1 / -0
    The value of $$\displaystyle \int_{1/n}^{(an - 1)/n} \dfrac {\sqrt {x}}{\sqrt {a - x} + \sqrt {x}} dx$$ is equal to
    Solution
    Let, $$I =\displaystyle  \int_{1/2}^{(an - 1)/n} \dfrac {\sqrt {x}}{\sqrt {a - x} + \sqrt {x}}dx$$
    $$=\displaystyle  \int_{\dfrac {1}{n}}^{a - \dfrac {1}{n}} \dfrac {\sqrt {x}}{\sqrt {a - x} + \sqrt {x}} dx$$     ....(i)
    $$= \displaystyle \int_{\dfrac {1}{n}}^{a - \dfrac {1}{n}} \dfrac {\left (\sqrt {\dfrac {1}{n} + a - \dfrac {1}{n} - x}\right )}{\sqrt {a - \left (\dfrac {1}{n} + a - \dfrac {1}{n} - x\right )} + \sqrt {\dfrac {1}{n} + a - \dfrac {1}{n} - x}}dx$$
    $$\Rightarrow I =\displaystyle  \int_{\dfrac {1}{n}}^{a - \dfrac {1}{n}} \dfrac {\sqrt {a - x}}{\sqrt {x} + \sqrt {a - x}} dx$$   .... (ii)
    On adding Eqs. (i) and (ii), we get
    $$2I =\displaystyle  \int_{\dfrac {1}{n}}^{a - \dfrac {1}{n}} 1dx = [x]_{\dfrac {1}{n}}^{a - \dfrac {1}{n}}$$
    $$= a - \dfrac {1}{n} - \dfrac {1}{n} = \dfrac {na - 2}{n}\Rightarrow I = \dfrac {na - 2}{2n}$$.
  • Question 10
    1 / -0
    The value of $$\displaystyle\int _{ 0 }^{ \pi  }{ \dfrac { dx }{ 5+3\cos { x }  }  } $$ is
    Solution
    Consider, $$\dfrac{1}{5+3\cos x}$$ 
    $$=\dfrac{1}{5+\dfrac{3-3\tan^{2}(\frac{x}{2})}{1+\tan^{2}(\frac{x}{2})}}$$ ...... $$\left[\because \cos 2x=\dfrac{1-\tan^{2}x}{1+\tan^{2}x}\right]$$

    $$=\dfrac{1+\tan^{2}\frac{x}{2}}{5+5\tan^{2}\frac{x}{2}+3-3\tan^{2}\frac{x}{2}}$$

    $$=\dfrac{\sec^{2}\frac{x}{2}}{8+2\tan^{2}\frac{x}{2}}$$

    Now, $$\displaystyle \int_{0}^{\pi}\dfrac{1}{5+3\cos x}$$

    $$=\displaystyle \int_{0}^{\pi} \dfrac{\sec^{2}\frac{x}{2}}{8+2\tan^{2}\frac{x}{2}}dx$$
    Take $$\tan\dfrac{x}{2}=t$$$$\implies \dfrac{1}{2}.\sec^{2}\dfrac{x}{2}dx=dt$$

    Then, we get
    $$\displaystyle \int \dfrac{dt}{4+t^{2}}dx$$

    $$=\dfrac{1}{2}\left[\tan^{-1}\left(\dfrac{t}{2}\right)\right]$$
    $$=\dfrac{1}{2}\left[\tan^{-1}\left(\dfrac{\tan(\frac{x}{2})}{2}\right)\right]_{0} ^{\pi}$$

    $$=\dfrac{1}{2}\left(\dfrac{\pi}{2}\right)$$

    $$=\dfrac{\pi}{4}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now