Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle \int_{\log 2}^{x}\frac{1}{\sqrt{e^x-1}}dx=\frac{\pi }{6}$$, then the value of $$x$$ is 

  • Question 2
    1 / -0

    $$\displaystyle\int { \cfrac { 1 }{ 7 } \sin { \left( \cfrac { x }{ 7 } +10 \right)  } dx } $$ is equal to

  • Question 3
    1 / -0

    If $$\displaystyle\int { \sqrt { 1+\sin { x }  } \cdot f\left( x \right) dx } =\dfrac { 2 }{ 3 } { \left( 1+\sin { x }  \right)  }^{ { 3 }/{ 2 } }+C$$, then $$f\left( x \right) $$ is equal to

  • Question 4
    1 / -0

    $$\displaystyle\int { { x }^{ x }\log { \left( ex \right)  } dx } $$ is equal to

  • Question 5
    1 / -0

    $$\displaystyle \int _{ 0 }^{ \pi/2}{ \frac{1}{a + b \cos x}} dx, a > |b| =$$.

  • Question 6
    1 / -0

    $$\displaystyle\int _{ 0 }^{ { \sqrt { \pi  }  }/{ 2 } }{ 2{ x }^{ 3 }\sin { \left( { x }^{ 2 } \right)  } dx } $$ is equal to

  • Question 7
    1 / -0

    If $$ \int _0^1 xdx = \dfrac {\pi}{4} - \dfrac {1}{2} ln 2 $$ then the value of definite integral $$ \int _0^1 \tan^{-1} (1-x+x^2) dx $$ equals :

  • Question 8
    1 / -0

    $$\displaystyle \int_{0}^{\infty} \dfrac {x \ln x}{(1 + x^{2})^{2}}dx =$$

  • Question 9
    1 / -0

    Given $$\int_{1}^{2} e^{x^{2}} dx = a$$ the the value of $$\int_{e}^{e^{4}}\sqrt {ln x} dx$$ is

  • Question 10
    1 / -0

    If $$f\left( x \right) $$ is defined $$\left[ -2,2 \right] $$ by $$f\left( x \right) =4{ x }^{ 2 }-3x+1$$ and $$g\left( x \right) =\dfrac { f\left( -x \right) -f\left( x \right)  }{ { x }^{ 2 }+3 } $$, then $$\displaystyle\int _{ -2 }^{ 2 }{ g\left( x \right) dx } $$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now