Self Studies

Integrals Test - 34

Result Self Studies

Integrals Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \int \dfrac{xe^x}{(1 + x)^2} dx$$ is equal to
    Solution
    Let $$I =\displaystyle  \int \dfrac{xe^x}{(1 + x)^2} dx$$

    $$I = \int \dfrac{(x + 1 - 1)e^x}{(1 + x)^2} dx$$

    $$I=\displaystyle  \int \dfrac{e^x}{(1 + x)} dx - \int \dfrac{e^x}{(1 + x)^2} dx$$

    Applying integration by parts in first integral, we get

    $$I =\displaystyle  \dfrac{e^x}{(1 + x)}- \int - \left( \dfrac{1}{(1 + x)^2} \right ) e^x dx - \int \dfrac{e^x}{(1 + x)^2}  dx + C$$

    $$I =\displaystyle  \dfrac{e^x}{(1 + x)} + \int  \left( \dfrac{1}{(1 + x)^2} \right ) e^x dx - \int \dfrac{e^x}{(1 + x)^2}  dx + C$$

    $$I= \dfrac{e^x}{(1 + x)} + C$$
  • Question 2
    1 / -0
    Let $$f(x)$$ and $$g(x)$$ be two function satisfying $$f(x^2)+g (4-x)=4x^3, g(4-x)+g(x)=0$$, then the value of $$\int_{-4}^{4} f(x^2)dx$$ is:
    Solution
    Let $$I=\int_{-4}^{4}f(x^2)dx$$
    $$\therefore I=\int_{-4}^{0}f(x^2)dx+\int_{0}^{4}f(x^2)dx$$
    $$\therefore I=\int_{4}^{0}f((-x)^2)dx+\int_{0}^{4}f(x^2)dx$$
    $$\therefore I=2\int_{0}^{4}f(x^2)dx$$
    $$\therefore I=2\int_{0}^{4}(4x^3-g(4-x))dx$$ (from given equation)
    $$\therefore I=2\int_{0}^{4}4x^3dx-2\int_{0}^{4}g(4-x)dx$$
    $$\therefore I=2\int_{0}^{4}4x^3dx-2\int_{0}^{2}g(4-x)dx-2\int_{2}^{4}g(4-x)dx$$
    $$\therefore I=2\int_{0}^{4}4x^3dx-2\int_{0}^{2}g(4-x)dx-2\int_{2}^{4}g(4-x)dx$$ ... (1)
    Let $$I_1=\int_{2}^{4}g(4-x)dx$$
    Now, consider $$(4-x)=y$$ which is substituted in $$I_1$$ 
    $$\therefore I_1=\int_{0}^{2}g(y)dy$$ (inverting limits and $$dy$$ both provide negative signs)
    Substituting $$I_1$$ in (1), we have
    $$ I=2\int_{0}^{4}4x^3dx-2\int_{0}^{2}g(4-x)dx-2\int_{0}^{2}g(y)dy$$
    Also, $$g(4-x)=-g(x)$$ from given equation and $$g(y)=g(x)$$ from variable substitution
    $$\therefore I=2\int_{0}^{4}4x^3dx-2\int_{0}^{2}-g(x)dx-2\int_{0}^{2}g(x)dx$$
    $$\therefore I=2\int_{0}^{4}4x^3dx$$
    $$\therefore I=512$$
    This is the required answer.
  • Question 3
    1 / -0
    If $$\int \dfrac {1}{x \sqrt {1 - x^{3}}}dx = a\log \left |\dfrac {\sqrt {1 - x^{3}} - 1}{\sqrt {1 - x^{3}} + 1}\right | + b$$ then $$a =$$
    Solution
    $$I=\int { \cfrac { 1 }{ x\sqrt { 1-{ x }^{ 3 } }  } dx } =\int { \cfrac { { x }^{ 2 } }{ { x }^{ 3 }\sqrt { 1-{ x }^{ 3 } }  } dx } $$
    Let $$\sqrt { 1-{ x }^{ 3 } } =t$$
    $$I=\int { \cfrac { 1 }{ x\sqrt { 1-{ x }^{ 3 } }  } dx } =\int { \cfrac { { x }^{ 2 } }{ { x }^{ 3 }\sqrt { 1-{ x }^{ 3 } }  } dx } \\ \Rightarrow \cfrac { 1 }{ 2\sqrt { 1-{ x }^{ 3 } }  } x(-3{ x }^{ 2 })dx=dt\\ \Rightarrow I=\cfrac { 2 }{ 3 } \int { \cfrac { 1 }{ { t }^{ 2 }-1 } dt } \\ \Rightarrow \cfrac { 3 }{ 2 } I=\int { \cfrac { 1 }{ (t+1)(t-1) } dt } =\cfrac { 1 }{ 2 } \int { \cfrac { (t+1)-(t-1) }{ (t+1)(t-1) }  } dt\\ \Rightarrow 3I=\int { \cfrac { 1 }{ (t-1) } dt } -\int { \cfrac { 1 }{ (t+1) } dt } \\ =\ln { \left| t-1 \right|  } -\ln { \left| t+1 \right|  } +b$$

    where $$b$$ is a constant
    $$\Rightarrow 3I= \ln{ \left| \cfrac{t-1}{t+1} \right| }+b$$

    Converting $$t=\sqrt{1-x^3}$$, we get
    $$I=\cfrac{1}{3} \ln{ \left| \cfrac{\sqrt{1-x^3} -1}{\sqrt{1-x^3} +1} \right| }$$
    Hence, the correct answer is $$a=\cfrac{1}{3}$$
  • Question 4
    1 / -0
    The value of the definite integral $$\int_{1}^{\infty}(e^{x + 1} + e^{3 - x})^{-1}dx$$ is
    Solution
    $$I=\displaystyle \int_{1}^{\infty}(e^{x+1}+e^{3-x})^{-1}dx=\int_{1}^{\infty}\dfrac{1}{e^{x+1}+e^{3-x}}dx$$
    $$I=\displaystyle \int_{1}^{\infty}\dfrac{e^x}{e^{2x+1}+e^{3}}dx=\dfrac{1}{e}\int_{1}^{\infty}\dfrac{e^x}{e^{2x}+e^{2}}dx$$
    Substitute $$e^x=t\Rightarrow e^xdx=dt$$ and limits will be 
    Lower limit $$x=1\Rightarrow t=e$$ 
    Upper limit $$x=\infty\Rightarrow t=\infty$$
    $$I=\displaystyle \dfrac{1}{e}\int_{e}^{\infty}\dfrac{1}{t^{2}+e^{2}}dt$$ 
    $$=\dfrac{1}{e}\left| \dfrac{1}{e}\tan^{-1}\left | \dfrac{t}{e}\right |\right |_{e}^{\infty}=\dfrac{1}{e^2}\left | \dfrac{\pi}{2}-\dfrac{\pi}{4}\right |=\dfrac{\pi}{4e^2}$$
    Hence, $$(A)$$
  • Question 5
    1 / -0
    Solve $$\int_{0}^{\dfrac {\pi}{2}}\sqrt {\sin \phi}\cos^{5}\phi d\phi$$.
    Solution
    Let

    $$\begin{matrix} I=\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \sqrt { \sin  \phi  } { { \cos   }^{ 5 } }\phi d\phi  }  \\ =\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \sqrt { \sin  \phi  } { { \cos   }^{ 4 } }\phi \cos  \phi d\phi  }  \\ =\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \sqrt { \sin  \phi  } { { \left( { 1-{ { \sin   }^{ 2 } }\phi  } \right)  }^{ 2 } }\cos  \phi d\phi  }  \\ put\, \, \, t=\sin  \phi  \\ \dfrac { { dt } }{ { d\phi  } } =\cos  \phi  \\ dt=\cos  \phi d\phi  \\ When\, \, \phi =0,\, \, t=0\, \, when\, \, \phi =\dfrac { \pi  }{ 2 } ,\, t=1 \\ \therefore I=\int _{ 0 }^{ 1 }{ \sqrt { t } { { \left( { 1-{ t^{ 2 } } } \right)  }^{ 2 } }dt }  \\ =\int _{ 0 }^{ 1 }{ \sqrt { t } \left( { 1-2{ t^{ 2 } }+{ t^{ 4 } } } \right) dt }  \\ =\int _{ 0 }^{ 1 }{ { t^{ \dfrac { 1 }{ 2 }  } }+{ t^{ \dfrac { 9 }{ 2 }  } }-2{ t^{ \dfrac { 5 }{ 2 }  } }dt }  \\ =\left[ { \dfrac { 2 }{ 3 } { t^{ \dfrac { 3 }{ 2 }  } }+\dfrac { 2 }{ { 11 } } { t^{ \dfrac { { 11 } }{ 2 }  } }-\dfrac { 4 }{ 7 } { t^{ \dfrac { 7 }{ 2 }  } } } \right] _{ 0 }^{ 1 } \\ =\dfrac { 2 }{ 3 } +\dfrac { 2 }{ { 11 } } -\dfrac { 4 }{ 7 }  \\ =\dfrac { { 154+42-132 } }{ { 3\times 11\times 7 } } =\dfrac { { 64 } }{ { 231 } }  \\  \end{matrix}$$
  • Question 6
    1 / -0
    $$\int_{0}^{\infty} \dfrac {x\tan^{-1}x}{(1 + x^{2})x^{2}} dx$$.
    Solution
    Let 
          $$\begin{matrix} I=\int _{ 0 }^{ \infty  }{ \dfrac { { x{ { \tan   }^{ -1x } } } }{ { \left( { 1+{ x^{ 2 } } } \right) { x^{ 2 } } } } dx }  \\ \, \, \, \, \, \, =\int _{ 0 }^{ \infty  }{ \dfrac { { { { \tan   }^{ -1x } } } }{ { \left( { 1+{ x^{ 2 } } } \right) x } } dx }  \\  \end{matrix}$$
    Now,
        $$\begin{matrix} \dfrac { { dI } }{ { dx } } =\int _{ 0 }^{ \infty  }{ \dfrac { 1 }{ { x\left( { 1+{ x^{ 2 } } } \right)  } } \left[ { \dfrac { 1 }{ { 1+{ x^{ 2 } } } } .xdx } \right]  }  \\ \, \, \, \, \, \, \, \, =\int _{ 0 }^{ \infty  }{ \dfrac { { dx } }{ { \left( { 1+{ x^{ 2 } } } \right) \left( { 1+{ x^{ 2 } } } \right)  } }  } \\, \, \, \quad \quad \quad \quad \quad =\int _{ 0 }^{ \infty  }{ \left[ { \dfrac { 1 }{ { 1+{ x^{ 2 } } } } -\dfrac { 1 }{ { 1+{ x^{ 2 } } } }  } \right]  } dx \\ \, \, \, \, \, \, \, \, \, =\dfrac { \pi  }{ 2 } \log  2 \\  \end{matrix}$$
    Hence option (a) is correct.
  • Question 7
    1 / -0
    The value of $$\displaystyle \int _{ 0 }^{ \dfrac { \pi  }{ 4 }  }{ \cos ^{ 3 }{ 2x } dx } $$ is:
    Solution
    We have to find the value of $$\displaystyle \int_{0}^{\pi/4}\cos^3 (2x)\:dx$$

    Consider $$\displaystyle \int_{0}^{\pi/4}\cos^3 (2x)\:dx$$

    Substitute $$u=2x$$
    $$\Rightarrow du=2dx$$

    When $$x=0, u=0$$ and when $$x=\pi/4, u=\pi/2$$

    $$\therefore \displaystyle  \int_{0}^{\pi/4}\cos ^3 (2x)\:dx=\int_{0}^{\pi/2}\cos ^3 (u) \: \dfrac{du}{2}$$

                                       $$\displaystyle =\dfrac{1}{2}\int_{0}^{\pi/2}\cos ^3(u)\:du$$

                                       $$\displaystyle =\dfrac{1}{2}\int_{0}^{\pi/2}\cos ^2(u)\:\cos  (u)du$$

                                       $$\displaystyle =\dfrac{1}{2}\int_{0}^{\pi/2}(1-\sin^2u)\:\cos \:u\:du \quad [\because \cos ^2u=1-\sin^2u]$$

    Substitute $$\sin\:u=v$$
    $$\Rightarrow \cos \:u\:du=dv$$

    When $$u=0, v=0$$ and when $$u=\pi/2, v=\sin (\pi/2)=1$$

    $$\therefore \displaystyle \dfrac{1}{2}\int_{0}^{\pi/2}(1-\sin^2u)\:\cos \:u\:du = \dfrac{1}{2} \int_{0}^{1}(1-v^2) dv $$

                                                           $$\displaystyle =\dfrac{1}{2}\left[v-\dfrac{v^3}{3}\right]_{0}^{1}$$

                                                           $$=\dfrac{1}{2}\left[\left(1-\dfrac{1}{3}\right)-(0-0)\right]$$

                                                           $$=\dfrac{1}{2} \left(\dfrac{2}{3}\right)$$

                                                           $$=\dfrac{1}{3}$$

    $$\therefore \displaystyle \int_{0}^{\pi/4}\cos ^3 (2x)\:dx=\dfrac{1}{3}$$
  • Question 8
    1 / -0
    If $$\cfrac { \pi  }{ 2 } <t<\cfrac { 2\pi  }{ 3 } $$ and $$=\int _{ 0 }^{ \sin { 2t }  }{ \cfrac { dx }{ \sqrt { 4\cos ^{ 2 }{ t-{ x }^{ 2 } }  }  }  } $$ then the value of $$\cfrac { 2005\left( I+t \right)  }{ \pi  } $$ equals
    Solution
    $$I=\int _{ 0 }^{ \sin { 2t }  }{ \cfrac { dx }{ \sqrt { { \left( 2\cos { t }  \right)  }^{ 2 }-{ x }^{ 2 } }  }  } ={ \left\{ \sin ^{ -1 }{ \left( \cfrac { x }{ 2\cos { t }  }  \right)  }  \right\}  }_{ 0 }^{ \sin { 2t }  }$$
    $$=\sin ^{ -1 }{ \left( \cfrac { \sin { 2t }  }{ 2\cos { t }  }  \right)  } =\sin ^{ -1 }{ \left( \sin { t }  \right)  } =\sin ^{ -1 }{ \left( \sin { (\pi -t) }  \right)  } $$
    $$\left( \because \cfrac { \pi  }{ 2 } <t<\cfrac { 2\pi  }{ 3 }  \right) $$
    $$I=\pi -t$$  $$I+t=\pi \left( \because \cfrac { \pi  }{ 3 } <\pi -t<\cfrac { \pi  }{ 2 }  \right) $$
    $$\therefore \cfrac { I+t }{ \pi  } =1\quad $$
    $$\quad \therefore \cfrac { 2005(I+t) }{ \pi  } =2005\quad \quad $$
  • Question 9
    1 / -0
    The value of $$\int_{0}^{1} \dfrac {8\log (1 + x)}{1 + x^{2}} dx$$ is
    Solution
    Let
         $$\begin{matrix} I=\int _{ 0 }^{ 1 }{ \frac { { 8\log  \left( { 1+x } \right)  } }{ { 1+{ x^{ 2 } } } }  } dx \\ \, \, \, \, =8\int _{ 0 }^{ 1 }{ \frac { { \log  \left( { 1+x } \right)  } }{ { 1+{ x^{ 2 } } } }  } dx \\ put\, \, \, x=\tan  \theta  \\ \, \, \, \, \, \Rightarrow dx={ \sin ^{ 2 }  }\theta d\theta  \\ x,\, \frac { \pi  }{ 4 } ,\, \, \, \, x=0 \\ \quad \quad \quad \quad I=8\int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ \frac { { \log  \left( { 1+x } \right)  } }{ { { { \sin   }^{ 2 } }\theta  } }  } { \sin ^{ 2 }  }\theta d\theta  \\ \, \, \, \, \, \quad \quad \quad \quad =8\int _{ 0 }^{ \frac { \pi  }{ 4 }  }{ \log  \left( { 1+\tan  x } \right)  } dx \\ \quad \quad =8\times \frac { \pi  }{ 8 } \log  2 \\ \, \, \, =\pi \log  2 \\  \end{matrix}$$
    Hence option (A) is true.
  • Question 10
    1 / -0
    The function 
    $$ f(x) = \int_1^x [ 2 (t-1) (t-2)^3+3(t-1)^2 (t-2)^2] dt $$ has :
    Solution
    We have 
    $$ f(x) = \int_1^x [ 2 (t-1) (t-2)^3 + 3 (t-1)^2 (t-2)^2 ] dt $$
    $$ = \int_1^x (t-1)(t-2)^2 [ 5t-7 ] dt $$
    $$ \Rightarrow f'(x) = (x-1)(x-2)^2 (5x-7) $$
    for max. or min. $$ f'(x) = 0 \Rightarrow x = 1,2, \dfrac {7}{5} $$
    Now $$ f''(x) = (x-2)^2 (5x-7) + 5(x-1)(x-2)^2 + 2 (x-2) (x-1) (5x-7) $$
    $$ \Rightarrow f''(0) < 0 , f'' (7/5) > 0 $$ and $$f''(2) = 0 $$
    Hence $$f(x) $$ attains its maximum at $$x=1 $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now