Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    $$\int \dfrac {2x + 5}{\sqrt {7 - 6x - x^{2}}} dx = A\sqrt {7 - 6x - x^{2}} + B\sin^{-1} \left (\dfrac {x + 3}{4}\right ) + C$$
    (where $$C$$ is a constant of integration), then the ordered pair $$(A, B)$$ is equal to

  • Question 2
    1 / -0

    $$\displaystyle\int\displaystyle\frac{e^{\cot^{-1}x}}{1+x^2}(x^2-x+1)dx$$ 

  • Question 3
    1 / -0

    $$\displaystyle\int \displaystyle\frac{\cos \alpha}{\sin x\cos (x-\alpha)}dx=$$___________ $$+$$c where $$0 < x < \alpha < \pi_{/2}$$ and $$\alpha$$-constant.

  • Question 4
    1 / -0

    Let $$I=\displaystyle \int _{ \pi /4 }^{ \pi /3 }{ \cfrac { \sin { x }  }{ x }  } dx$$. Then?

  • Question 5
    1 / -0

    $$\int _{ 0 }^{ 1 }{ x{ \left[ 1-x \right]  }^{ 11 } } dx=........$$

  • Question 6
    1 / -0

    $$\displaystyle \int_{0}^{1}{\dfrac{ln(1+x)}{1+{x}^{2}}}dx=$$

  • Question 7
    1 / -0

    What is $$\displaystyle \int_{0}^{2\pi}\sqrt {1 + \sin \dfrac {x}{2}}dx$$ equal to?

  • Question 8
    1 / -0

    $$\int _{ 0 }^{ 5 }{ \sqrt { 25-{ x }^{ 2 } }  } dx=.........$$

  • Question 9
    1 / -0

    The value of $$\displaystyle \int_{0}^{\dfrac {\pi}{4}} (\sqrt {\tan x} +  \sqrt {\cot x})\,\, dx$$ is equal to

  • Question 10
    1 / -0

    $$\int _{ a }^{ b }{ \cfrac { \log { x }  }{ x }  } dx=.......\quad $$ (where $$a,b\in { R }^{ + }$$)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now