Self Studies

Integrals Test - 36

Result Self Studies

Integrals Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\int _{ 0 }^{ \pi /2 }{ \cfrac { \cos { 2x }  }{ { \left( \sin { x } +\cos { x }  \right)  }^{ 2 } }  } dx=......$$
    Solution
    $$ I=\int _{ 0 }^{ \pi /2 }{ \cfrac { \cos { 2x }  }{ { \left( \sin { x } +\cos { x }  \right)  }^{ 2 } }  } dx$$
    $$=\int _{ 0 }^{ \pi /2 }{ \cfrac { \cos { 2x }  }{ 1+2\sin { x } \cos { x }  }  } dx (\therefore cos^{2}{x} + sin^{2}{x} = 1) $$
    $$= \int _{ 0 }^{ \pi /2 }{ \cfrac { \cos { 2x }  }{ 1+\sin { 2x }  }  } dx$$
    $$\cfrac { 1 }{ 2 } \int _{ 0 }^{ \pi /2 }{ \cfrac { \cfrac { d }{ dx } \left( 1+\sin { 2x }  \right)  }{ 1+\sin { 2x }  }  } dx (\therefore substitute\ cos{2x} = 1+sin{2x}) $$
    $$=\cfrac { 1 }{ 2 } { \left[ \log { \left| 1+\sin { 2x }  \right|  }  \right]  }_{ 0 }^{ \pi /2 }=\cfrac { 1 }{ 2 } \left[ \log { 1 } -\log { 1 }  \right] \quad $$
    $$\therefore I=0$$
  • Question 2
    1 / -0
    $$\displaystyle \int _0^4\dfrac{2x+3}{x^2+3x+2}dx$$
    Solution
    Let $$x^2+3x+2=t\implies 2x+3=dt$$

    $$x\to 0  \>to \>4\\t\to 2\to 30\\\displaystyle \int _2^{30}\dfrac 1tdt\\\left.\log t\right]_2^{30}\\\log 30-\log 2\\\\\log \dfrac {30}2\\\\log 15$$
  • Question 3
    1 / -0
    $$ \int { P\left( x \right) { e }^{ kx }dx=Q\left( x \right) { e }^{ 4x }+C }$$, where $$P(x)$$ is polynomial of degree $$n$$ and $$Q(x)$$ is polynomial of degree $$7$$. Then the value of $$ n+7+k+\lim _{ x\rightarrow \infty  }{ \dfrac { P\left( x \right)  }{ Q\left( x \right)  }  }$$ is:
  • Question 4
    1 / -0
    $$\int { \cos { \left( \log { x }  \right)  }  } dx=............\quad +\quad c$$
    Solution

    Consider the given integral.

    $$I=\int{\cos \left( \log x \right)dx}$$

     

    Let $$t=\log x$$

    $$ \dfrac{dt}{dx}=\dfrac{1}{x} $$

    $$ xdt=dx $$

     

    Therefore,

    $$ I=\int{{{e}^{t}}\cos tdt} $$

    $$ I=\cos t{{e}^{t}}-\int{\left( -\sin t \right){{e}^{t}}}dt $$

    $$ I={{e}^{t}}\cos t+\int{\left( \sin t \right){{e}^{t}}}dt $$

    $$ I={{e}^{t}}\cos t+\sin t{{e}^{t}}-\int{\cos t{{e}^{t}}}dt $$

    $$ I={{e}^{t}}\cos t+\sin t{{e}^{t}}-I $$

    $$ 2I={{e}^{t}}\left( \cos t+\sin t \right)+C $$

    $$ I=\dfrac{{{e}^{t}}}{2}\left( \cos t+\sin t \right)+C $$

     

    On putting the value of $$'t'$$, we get

    $$ I=\dfrac{{{e}^{\log x}}}{2}\left( \cos \left( \log x \right)+\sin \left( \log x \right) \right)+C $$

    $$ I=\dfrac{x}{2}\left( \cos \left( \log x \right)+\sin \left( \log x \right) \right)+C $$

     

    Hence, this is the answer.

  • Question 5
    1 / -0
    $$\displaystyle\int^{\pi}_0\sqrt{2}(1+\cos x)^{7/2}dx=?$$
  • Question 6
    1 / -0
    The value of the integral $$\displaystyle\int^1_0\dfrac{dx}{x^2+2x\cos \alpha +1}$$, where $$0 < \alpha < \dfrac{\pi}{2}$$, is equal to
    Solution
    $$\displaystyle\int^1_0\dfrac{dx}{x^2+2x\cos \alpha +1}$$

    $$\implies \displaystyle\int^1_0\dfrac{dx}{x^2+2x\cos \alpha +\cos^2 \alpha+\sin^2 \alpha}$$

    $$\implies \displaystyle \int_0^1 \cfrac{dx}{(x+ \cos \alpha)^2 + \sin^2 \alpha}$$

    $$\implies \displaystyle \cfrac{1}{\sin \alpha} \Bigg[\tan^{-1} \cfrac{x+\cos x}{\sin x}\Bigg]_0^1 $$   $$\left[\because \int \cfrac{1}{x^2+a^2}=\dfrac{1}{a}tan^{-1}(\dfrac{x}{a}) \right]$$

    $$\implies \displaystyle \cfrac{1}{\sin \alpha} \Bigg[\tan^{-1} \cfrac{1+\cos \alpha}{\sin \alpha} - \tan^{-1} \cfrac{\cos \alpha}{\sin \alpha}\Bigg] $$

    $$\implies \cfrac{1}{\sin \alpha} \Bigg[ \tan^{-1} \cfrac{\cfrac{1+\cos \alpha}{\sin \alpha} - \cfrac{\cos \alpha}{\sin \alpha}}{1+\cfrac{\cos \alpha + \cos^2 \alpha}{\sin^2 \alpha}}\Bigg]$$

    $$\implies \cfrac{1}{\sin \alpha} \tan^{-1} \cfrac{\sin \alpha}{1+\cos \alpha}$$

    $$\implies \cfrac{1}{\sin \alpha} \tan^{-1} \tan \cfrac{\alpha}{2}$$

    $$\implies \cfrac{\alpha}{2 \sin \alpha}$$
  • Question 7
    1 / -0
    The value of $$\int \dfrac {1}{\sqrt {\sin^{3}x \cos^{5}x}} dx$$ is
    Solution
    Let $$I=\int { \cfrac { 1 }{ \sqrt { \sin ^{ 3 }{ x } \cos ^{ 5 }{ x }  }  } dx } $$
    $$I=\int { \cfrac { 1 }{ \sqrt { \cfrac { \sin ^{ 3 }{ x }  }{ \cos ^{ 3 }{ x }  } \cos ^{ 8 }{ x }  }  } dx } =\cfrac { 1 }{ \cos ^{ 4 }{ x } \sqrt { \tan ^{ 3 }{ x }  }  } dx$$
    $$I=\int { \cfrac { \sec ^{ 4 }{ x }  }{ \sqrt { \tan ^{ 3 }{ x }  }  } dx } =\int { \cfrac { \sec ^{ 3 }{ x } .\sec ^{ 2 }{ x }  }{ \sqrt { \tan ^{ 3 }{ x }  }  } dx } $$
    $$I=\int { \cfrac { \left( 1+\tan ^{ 2 }{ x }  \right)  }{ \sqrt { \tan ^{ 3 }{ x }  }  } \sec ^{ 2 }{ x } dx } $$
    Let $$\tan { x } =t$$
    $$\tan { x } =t$$
    $$\tan { x } =t$$
    $$\sec ^{ 2 }{ x } dx=dt$$
    So, $$I=\int { \cfrac { 1+{ t }^{ 2 } }{ \sqrt { { t }^{ 3 } }  } dt } =\int { \cfrac { 1+{ t }^{ 2 } }{ { t }^{ 3/2 } } dt } $$
    $$I=\int { { t }^{ -3/2 }dt } +\int { { t }^{ 1/2 }dt } $$
    $$I=\cfrac { { t }^{ -1/2 } }{ -1/2 } +\cfrac { { t }^{ 3/2 } }{ 3/2 } +c$$
    So, $$I=\cfrac { -2 }{ \sqrt { \tan { x }  }  } +\cfrac { 2 }{ 3 } { \left( \tan { x }  \right)  }^{ 3/2 }+c$$
    where C is arbitary constant
  • Question 8
    1 / -0
    $$\displaystyle \int \dfrac{x \,\ell nx}{(x^2 - 1)^{3/2}}dx$$ equals
    Solution
    $$\displaystyle \displaystyle \int \dfrac {x ln x}{(x^2-1)^{3/2}}dx$$
    $$lnx\displaystyle \int { \dfrac { x }{ { \left( { x }^{ 2 }-1 \right)  }^{ 3/2 } } dx } -\displaystyle \int { \left[ \left( \dfrac { d }{ dx } lnx \right) \displaystyle \int { \dfrac { x }{ { \left( { x }^{ 2 }-1 \right)  }^{ 3/2 } }  }  \right] dx } $$
    $$=lnx\dfrac { 1 }{ 2 } \dfrac { \left( -2 \right)  }{ \sqrt { { x }^{ 2 }-1 }  } -\displaystyle \int { \dfrac { 1 }{ x } \left( \dfrac { -1 }{ \sqrt { { x }^{ 2 }-1 }  }  \right) dx } $$
    $$=lnx\dfrac { 1 }{ 2 } \dfrac { \left( -2 \right)  }{ \sqrt { { x }^{ 2 }-1 }  } -\displaystyle \int { \dfrac { 1 }{ x } \left( \dfrac { -1 }{ \sqrt { { x }^{ 2 }-1 }  }  \right) dx } $$
    $$=-\dfrac { lnx }{ \sqrt { { x }^{ 2 }-1 }  } +\sec ^{ -1 }{ x } +C$$
    $$\therefore \displaystyle \int { \dfrac { xlnx }{ { \left( { x }^{ 2 }-1 \right)  }^{ 3/2 } } dx } =arc\sec { x-\dfrac { lnx }{ \sqrt { { x }^{ 2 }-1 }  } +C } $$

  • Question 9
    1 / -0
    $$\displaystyle \int_{1/e}^{e}{|\ln x|dx}$$ equals
    Solution
    We know, 
    By parts integrals
    $$\displaystyle \int u.v \ dx=u\int v\ dx$$ $$\displaystyle -\int \left ( \dfrac{du}{dx}\int v\ dx \right )dx$$

    $$ \displaystyle \int lnx \cdot 1dx = lnx\int dx-\int \frac{1}{x}\int dx\,dx $$

    $$ \displaystyle = xlnx-x+c $$

    $$ \displaystyle \int _{1/e}^{e}\ |lnx|dx = \int_{1/e}^{1}|lnx|dx+\int _{1}^{e} |lnx|dx $$

    $$ \displaystyle =\int _{1/e}^{-1}lnxdx+\int_{1}^{e} lnxdx$$

    $$\displaystyle  = -[x(lnx-1)]_{1/e}^{1}+[x|lnx-1|]_{1}^{e} $$

    $$ \displaystyle = -[-1-\frac{1}{e}(-2)]+[0-1(-1)] $$

    $$ \displaystyle = 2(1-\frac{1}{e}) $$

    $$ \therefore $$ Option B is correct 
  • Question 10
    1 / -0
    $$\int _{ 0 }^{ \pi /4 }{ x.\sec ^{ 2 }{ x } dx=? }$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now