Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \int \dfrac{\{f(x) \cdot \phi' (x) - f'(x) \cdot \phi(x) \}}{f(x) \cdot \phi(x)} \{log \,\phi(x) - log \,f(x) \}dx$$ is equal to

  • Question 2
    1 / -0

    $$\int \log _ { 10 } x d x =$$

  • Question 3
    1 / -0

    Evaluate: $$\displaystyle\int \frac { 1 } { ( x + 2 ) \sqrt { x + 1 } } d x $$

  • Question 4
    1 / -0

    Evaluate: $$\int _{ 1/3 }^{ 1 }{ \cfrac { { \left( x-{ x }^{ 3 } \right)  }^{ 1/3 } }{ { x }^{ 4 } }  } dx=$$

  • Question 5
    1 / -0

    Evaluate:
    $$\int x ^ { x } \ln ( e ^x ) d x$$  

  • Question 6
    1 / -0

    Evaluate: $$\displaystyle \int _ { 0 } ^ { \pi / 4 } \sec ^ { 7 } {\theta} \sin ^ { 3 } {\theta} {d \theta} =$$

  • Question 7
    1 / -0

    The value of the defined integral $$\displaystyle \int^{\pi/2}_{0}(\sin x+\cos x)\sqrt {\dfrac {e^{x}}{\sin x}}dx$$ equals

  • Question 8
    1 / -0

    $$\displaystyle \int \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) \sqrt { 1 + x ^ { 4 } } } d x$$ is equal to 

  • Question 9
    1 / -0

    $$\displaystyle \int \dfrac { d x } { \sin ^ { 2 } x \cos ^ { 2 } x }$$ equals-

  • Question 10
    1 / -0

    $$\int { { e }^{ x^{ 3 } }+{ x }^{ 2-1 }(3{ x }^{ 4 }+{ 2x }^{ 3 }+{ 2x }^{ 2 }\quad x=h(x)+c } $$ then the value of $$h(1)h(-1)$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now