Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    $$\int _{ 0 }^{ 1 }{ \dfrac { dx }{ \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+2 \right)  }  } $$=

  • Question 2
    1 / -0

    $$\int \left( x ^ { 6 } + 7 x ^ { 5 } + 6 x ^ { 4 } + 5 x ^ { 3 } + 4 x ^ { 2 } + 3 x + 1 \right) e ^ { x } d x$$ equals

  • Question 3
    1 / -0

    Evaluate$$\displaystyle \int _ { 0 } ^ { a } \dfrac { x d x } { \sqrt { a ^ { 2 } + x ^ { 2 } } } $$

  • Question 4
    1 / -0

    Evaluate $$\displaystyle \int _ { 0 } ^ { \infty } \frac { x ^ { 2 } + 1 } { x ^ { 4 } + 7 x ^ { 2 } + 1 } d x $$

  • Question 5
    1 / -0

    The intercepts on x-axis made by tangents to the curve, $$\int _{ 0 }^{ x }{ \left| t \right|  } dt,x\in R,$$ which are parallel to the line y=2x, are equal to:

  • Question 6
    1 / -0

    $$\int _{ 0 }^{ \pi  }{ \cfrac { { x }^{ 2 } }{ { \left( 1+sinx \right)  }^{ 2 } }  } dx$$ equals

  • Question 7
    1 / -0

    The value of $$\int _{ -1 }^{ 1 }{ \dfrac { { cot }^{ -1 }x }{ \pi  }  } dx$$

  • Question 8
    1 / -0

    The value of the integral $$\displaystyle \int_{-\pi/2}^{\pi/2} \left(x^{2}+\log \dfrac{\pi-x}{\pi+x}\right) \cos x dx $$ is 

  • Question 9
    1 / -0

    If $$\int \frac { x ^ { 2 } \tan ^ { - 1 } x } { 1 + x ^ { 2 } } d x = \tan ^ { - 1 } x - \frac { 1 } { 2 } \log \left( 1 + x ^ { 2 } \right) + f ( x ) + c$$ then $$f ( x ) =$$

  • Question 10
    1 / -0

    $$\begin{matrix} lim \\ n\rightarrow \infty  \end{matrix}\int _{ 0 }^{ 1 }{ \frac { { nx }^{ { n- }1 } }{ { 1+x }^{ 2 } } dx= } $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now