Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \int _{ 0 }^{ { \pi  }^{ 2 } }{ \dfrac { \sin { \sqrt { x }  }  }{ \sqrt { x }  }  }  dx$$ is equal to

  • Question 2
    1 / -0

    The integral $$\int _{ 2a/4 }^{ a/2 }{ (2\quad cosecx{ ) }^{ 17 } } $$ dx is equal to:

  • Question 3
    1 / -0

    Solve : $$\int^1_{0^+} \dfrac{x^x(x^{2x} +1)(lnx +1)}{x^{4x}+1} dx$$

  • Question 4
    1 / -0

    $$\displaystyle \int \frac { e ^ { x } ( 1 + \sin x ) } { 1 + \cos x } d x =$$

  • Question 5
    1 / -0

    The value of the integral $$\int _{ 0 }^{ 1 }{ \sqrt { \frac { 1-x }{ 1+x }  }  } $$ dx is

  • Question 6
    1 / -0

    Let $$A = \int _ { 0 } ^ { 1 } \frac { e ^ { t } } { t + 1 }$$ dt,  then the value of $$\int _ { 0 } ^ { 1 } \frac { t e ^ { t ^ { 2 } } } { t ^ { 2 } + 1 } d t$$ is:-

  • Question 7
    1 / -0

    The value of the integral $$\int _{ -\pi /2 }^{ \pi /2 }{ \left[ { x }^{ 2 }+log\frac { \pi -x }{ \pi +x }  \right]  } $$ cos x dx is 

  • Question 8
    1 / -0

    $$\int _ { 0 } ^ { 1 } \frac { d x } { \sqrt { x + 1 } + \sqrt { x } } d x =$$

  • Question 9
    1 / -0

    The value of the integral $$\int _ { - \pi } ^ { \pi } ( \cos p x - \sin q x ) ^ { 2 } d x$$ where $$p , q$$ are integers, is equal to:-

  • Question 10
    1 / -0

    $$\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } }  }  } $$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now