Self Studies

Integrals Test - 40

Result Self Studies

Integrals Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\int _{ log2 }^{ x }{ \dfrac { dx }{ \sqrt { { e }^{ x }-1 }  }  } =\dfrac { \pi  }{ 6 } ,$$then x is equal to _________.
    Solution

  • Question 2
    1 / -0
    If $$\int { x\sin { x }  } dx=-x\cos { x } +\alpha $$, then $$\alpha$$ is equal to
    Solution
    $$I=\displaystyle\int{x\sin{x}dx}$$

    Integrating by parts,

    Let $$u=x\Rightarrow\,du=dx$$

    $$dv=\sin{x}dx\Rightarrow\,v=-\cos{x}$$

    $$\int u.v dx=u \int vdx-\int \left [\int vdx. \dfrac{du}{dx}.dx \right ] $$......by parts formula

    $$I=-x\cos{x}+\displaystyle\int{\cos{x}dx}$$

    $$I=-x\cos{x}+\sin{x}+c$$    ......where $$c$$ is the constant of integration.

    We have $$I=\displaystyle\int{x\sin{x}dx}=-x\cos{x}+\alpha$$

    Comparing with $$I=-x\cos{x}+\sin{x}+c$$ we have

    $$\alpha=\sin{x}+c$$
  • Question 3
    1 / -0
    What is $$\displaystyle \int \dfrac{dx}{2x^2 - 2x + 1}$$ equal to ?
    Solution
    Given,

    $$\int \dfrac{1}{2x^2-2x+1}dx$$

    complete the square

    $$=\int \dfrac{1}{2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}}dx$$

    apply $$u=x-\frac{1}{2}$$

    $$\int \dfrac{2}{4u^2+1}du$$

    apply $$u=\frac{1}{2}v$$

    $$=2\cdot \int \dfrac{1}{2\left(v^2+1\right)}dv$$

    $$=2\cdot \dfrac{1}{2}\tan ^{-1} \left(v\right)$$

    $$=\tan ^{-1} \left(2\left(x-\dfrac{1}{2}\right)\right)$$

    $$=\tan ^{-1} \left(2x-1\right)$$

    $$=\tan ^{-1}\left(2x-1\right)+C$$

  • Question 4
    1 / -0
    Select and write the most appropriate answer from the given alternatives for question :
    If $$\displaystyle \int^k_0 4x^3dx=16$$, then the value of $$k$$ is _____.
    Solution
    Given:
    $$\displaystyle \int^K_0 4x^3dx=16$$

    $$4\left(\dfrac{x^4}{4}\right)^K_0=16$$

    $$(x^4)^k_0=16$$

    $$k^4=16$$

    $$k^4=2^4$$

    $$\boxed{k=2}$$
  • Question 5
    1 / -0
    Evaluate $$\displaystyle\int^4_1x\sqrt{x}dx$$
    Solution
    $$I=\displaystyle\int^4_1x^{3/2}dx$$

    $$=\left[\dfrac{2}{3}x^{5/2}\right]^4_1$$  .............  $$\because\displaystyle\int{{x}^{n}dx}=\dfrac{{x}^{n+1}}{n+1}+c$$

    $$=\dfrac{62}{5}=12.4$$.
  • Question 6
    1 / -0
    Evaluate : $$\displaystyle\int^1_0\dfrac{dx}{\sqrt{5x+3}}$$
    Solution
    $$I=\displaystyle\int^1_0(5x+3)^{-1/2}dx=\left[2\cdot \dfrac{(5x+3)^{1/2}}{5}\right]^1_0=\dfrac{2}{5}(\sqrt{8}-\sqrt{3})$$.
  • Question 7
    1 / -0
    Evaluate : $$\displaystyle\int^2_0\sqrt{6x+4}dx$$
    Solution

  • Question 8
    1 / -0
    Evaluate $$\displaystyle\int^2_0\dfrac{dx}{\sqrt{4-x^2}}$$
    Solution

  • Question 9
    1 / -0
    Evaluate $$\displaystyle\int^1_0\dfrac{x^3}{(1+x^8)}dx$$
    Solution
    Let $$I=\displaystyle\int^1_0\dfrac{x^3}{(1+x^8)}dx$$

    Put $$x^4=t$$ and $$4x^3dx=dt$$.

    $$[x=0\Rightarrow t=0]$$ and $$[x=1\Rightarrow t=1]$$

    $$\therefore I=\dfrac{1}{4}\displaystyle\int^1_0\dfrac{dt}{(1+t^2)}\\$$
    $$=\dfrac{1}{4}[\tan^{-1}t]^1_0$$  ...........  $$\because\displaystyle \int \dfrac {dx}{ {x^2+a^2} }=\tan^{-1}\dfrac xa+C\\$$
    $$=\dfrac{1}{4}[\tan^{-1}1-\tan^{-1}0]\\$$
    $$=\left(\dfrac{1}{4}\times \dfrac{\pi}{4}\right)=\dfrac{\pi}{16}$$.
  • Question 10
    1 / -0
    Evaluate $$\displaystyle\int^{\sqrt{8}}_{\sqrt{3}}x\sqrt{1+x^2}dx$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now