Self Studies

Integrals Test - 41

Result Self Studies

Integrals Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate $$\displaystyle\int^{\pi/4}_0\tan^2xdx$$
    Solution

  • Question 2
    1 / -0
    Evaluate$$\displaystyle\int^{\pi/2}_0e^x\left(\dfrac{1+\sin x}{1+\cos x}\right)dx$$
    Solution
    Let $$I=\displaystyle\int^{\pi/2}_0e^x\left(\dfrac{1+\sin x}{1+\cos x}\right)dx$$

    $$=\displaystyle\int^{\pi/2}_0e^x\left\{\dfrac{1}{(1+\cos x)}+\dfrac{\sin x}{(1+\cos x)}\right\}dx$$

    $$=\displaystyle\int^{\pi/2}_0e^x\left\{\dfrac{1}{2\cos^2(x/2)}+\dfrac{2\sin(x/2)\cos (x/2)}{2\cos^2(x/2)}\right\}dx$$

    $$=\displaystyle\int^{\pi/2}_0e^x\left\{\tan\dfrac{x}{2}+\dfrac{1}{2}\sec^2\dfrac{x}{2}\right\}dx$$

    $$=\left[e^x\tan \dfrac{x}{2}\right]^{\pi/2}_0=e^{\pi/2}$$.
  • Question 3
    1 / -0
    Evaluate $$\displaystyle\int^{\pi}_0\dfrac{dx}{(1+\sin x)}$$
    Solution
    Let $$I=\displaystyle\int^{\pi}_0\dfrac{dx}{(1+\sin x)}$$

    $$=\displaystyle\int^{\pi}_0\dfrac{(1-\sin x)}{(1-\sin^2x)}dx$$

    $$=\displaystyle\int^{\pi}_0\dfrac{(1-\sin x)}{\cos^2x}dx$$.

    $$=\displaystyle\int^{\pi}_0[\sec^2x-\sec x\tan x]dx$$

    $$=[\tan x-\sec x]^{\pi}_0$$

    $$=(0+1)-(0-1)$$
    $$=2$$.
  • Question 4
    1 / -0
    Evaluate : $$\displaystyle\int^9_0\dfrac{dx}{(1+\sqrt{x})}$$
    Solution

  • Question 5
    1 / -0
    Evaluate $$\displaystyle\int^1_0\dfrac{xe^x}{(1+x)^2}dx$$
    Solution
    Let $$I=\displaystyle\int^1_0\dfrac{xe^x}{(1+x)^2}dx$$

    $$=\displaystyle\int^1_0e^x\left\{\dfrac{(1+x)-1}{(1+x)^2}\right\}dx$$

    $$=\displaystyle\int^1_0e^x\left\{\dfrac{1}{(1+x)}-\dfrac{1}{(1+x)^2}\right\}dx$$

    $$=\displaystyle\int^1_0e^x\{f(x)+f'(x)dx,$$ where $$f(x)=\dfrac{1}{(1+x)}$$

    $$=[e^xf(x)]^1_0$$

    $$=\left[e^x\cdot \dfrac{1}{(1+x)}\right]^1_0$$

    $$=\left(\dfrac{e}{2}-1\right)$$.
  • Question 6
    1 / -0
    Evaluate $$\displaystyle\int^{\pi/2}_{\pi/4}\cot xdx$$
    Solution

  • Question 7
    1 / -0
    Evaluate $$\displaystyle\int^{\pi/2}_{\pi/3} cosec xdx$$
    Solution

  • Question 8
    1 / -0
    Evaluate $$\displaystyle\int^{\pi/2}_0\dfrac{\cos x}{(1+\sin^2x)}dx$$
    Solution
    Let $$I=\displaystyle\int^{\pi/2}_0\dfrac{\cos x}{(1+\sin^2x)}dx$$

    Put $$\sin x=t$$ and $$\cos xdx=dt$$.

    $$[x=0\Rightarrow t=0]$$ and $$\left[x=\dfrac{\pi}{2}\Rightarrow t=1\right]$$.

    $$\therefore I=\displaystyle\int^1_0\dfrac{dt}{(1+t^2)}\\$$
    $$=[\tan^{-1}t]^1_0$$  .......  $$\displaystyle \int \dfrac {dx}{ {x^2+a^2} }=\tan^{-1}\dfrac xa+C$$

    $$=\dfrac{\pi}{4}-0\\$$.
    $$=\dfrac{\pi}{4}$$.
  • Question 9
    1 / -0
    Evaluate $$\displaystyle\int^{1}_0\dfrac{(1-x)}{(1+x)}dx$$
    Solution

  • Question 10
    1 / -0
    Evaluate $$\displaystyle\int^{\pi/2}_0\cos^3xdx $$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now