Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    The equation $$\displaystyle\int^{\pi/4}_{-\pi/4}\left(a|\sin x|+\dfrac{b\sin x}{1+\cos x}+c\right)dx=0$$, where a, b, c are constants, gives a relation between.

  • Question 2
    1 / -0

    The value of $$\displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx$$ is?

  • Question 3
    1 / -0

    Evaluate : $$\displaystyle\int^2_1|x^2-3x+2|dx$$

  • Question 4
    1 / -0

    The value of the integral $$\displaystyle\int^1_0\dfrac{x^{\alpha}-1}{log \alpha}dx$$, is?

  • Question 5
    1 / -0

    Value of $$\displaystyle\int^3_2\dfrac{dx}{\sqrt{(1+x^3)}}$$ is?

  • Question 6
    1 / -0

    The value of $$\int_{1}^{e} \dfrac{1+x^{2} \ln x}{x+x^{2} \ln x} d x$$ is

  • Question 7
    1 / -0

    $$I_{1}=\int_{0}^{\frac{\pi}{2}} \dfrac{\sin x-\cos x}{1+\sin x \cos x} d x, I_{2}=\int_{0}^{2 \pi} \cos ^{6} x d x$$$$I_{3}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{3} x d x, I_{4}=\int_{0}^{1} \ln \left(\dfrac{1}{x}-1\right) d x,$$ then

  • Question 8
    1 / -0

    If $$\int_{1}^{2} e^{x^{2}} d x=a,$$ then $$\int_{e}^{e^{4}} \sqrt{\ln x} d x$$ is equal to

  • Question 9
    1 / -0

    The value of the definite integral $$\displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 5 x}{\sin x} d x$$ is

  • Question 10
    1 / -0

    If $$\displaystyle \int_{0}^{t} \dfrac{b x \cos 4 x-a \sin 4 x}{x^{2}} d x=\dfrac{a \sin 4 t}{t}-1,$$ where $$0<t<\dfrac{\pi}{4}$$then the values of $$a, b$$ are equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now