Self Studies

Integrals Test - 44

Result Self Studies

Integrals Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\int_{a}^{b}(x-a)^{3}(b-x)^{4} d x$$ is
    Solution
    Let $$I=\int_{a}^{b}(x-a)^{3}(b-x)^{4} d x$$
    Put $$x=a \cos ^{2} \theta+b \sin ^{2} \theta, \Rightarrow d x=2(b-a) \sin \theta \cos \theta d \theta$$
    then $$\int_{a}^{b}(x-a)^{3}(b-x)^{4} d x$$
    $$=2(b-a) \int_{0}^{\pi / 2}\left(a \cos ^{2} \theta+b \sin ^{2} \theta-a\right)^{3}\left(b-a \cos ^{2} \theta\right)\\$$
    $$=2(b-a)^{8} \int_{0}^{\pi / 2} \sin ^{7} \theta \cos ^{9} \theta d \theta\\$$
    $$=2(b-a)^{8} \int_{0}^{\pi / 2} \sin ^{7} \theta\left(1-\sin ^{2} \theta\right)^{4} \cos \theta d \theta\\$$
    $$=2(b-a)^{8} \int_{0}^{1} x^{7}\left(1-x^{2}\right)^{4} d x\\$$
    $$=2(b-a)^{8} \int_{0}^{1} x^{7}\left(1-x^{2}\right)^{4} d x\\$$
    $$=2(b-a)^{8} \int_{0}^{1} x^{7}\left(1-4 x^{2}+6 x^{4}-4 x^{6}+x^{8}\right) d x\\$$
    $$=2(b-a)^{8}\left[\dfrac{1}{8}-\dfrac{4}{10}+\dfrac{6}{12}-\dfrac{4}{14}+\dfrac{1}{16}\right]=\dfrac{(b-a)^{8}}{280}$$
  • Question 2
    1 / -0
    Given $$I_{m}=\displaystyle \int_{1}^{e}(\log x)^{m} d x .$$ If $$\dfrac{I_{m}}{K}+\dfrac{I_{m-2}}{L}=e,$$ then the values of $$K$$ and $$L$$ are
    Solution
    $$I_{m}= \displaystyle \int_{1}^{e}(\log x)^{m} d x \\$$
    $$\therefore I_{m}=\left[x(\log x)^{m}\right]_{1}^{e}-\int_{1}^{e} x \dfrac{m(\log x)^{m-1}}{x} d x \text { (integrating by parts) }$$

    $$\Rightarrow \dot{I}_{m}=e-m \displaystyle \int_{1}^{e}(\log x)^{m-1} d x=e-m I_{m-1}\\$$

    Replacing $$m$$ by $$m-1\\$$
    $$I_{m-1}=e-(m-1) I_{m-2}\\$$
    From equations $$(1)$$ and $$(2),$$ we have
    $$I_{m}=e-m\left[e-(m-1) I_{m-2}\right]\\$$
    $$\Rightarrow I_{m}-m(m-1) I_{m-1}=e(1-m) \\$$
    $$\Rightarrow \dfrac{I_{m}}{1-m}+m I_{m-2}=e \\$$
    $$\Rightarrow K=1-m \text { and } L=\dfrac{1}{m}$$
  • Question 3
    1 / -0
    If $$\int_{0}^{f(x)} t^{2} d t=x \cos \pi x,$$ then $$f^{\prime}({9})$$ is
    Solution
    Given $$\int_{0}^{f(x)} t^{2} d t=x \cos \pi x\\$$
    Differentiating with respect to $$x$$.
    $$\left.\Rightarrow \dfrac{t^{3}}{3}\right|_{0} ^{f(x)}=x \cos \pi x\\$$
    $$\Rightarrow[f(x)]^{3}=3 x \cos \pi x..........(1)\\$$
    $$\Rightarrow[f(9)]^{3}=-27\\$$
    $$\Rightarrow f(9)=-3\\$$
    Also, differentiating equation (1) w.r.t. $$x$$, we get
    $$[f(x)]^{2} f^{\prime}(x)=\cos \pi x-x \pi \sin \pi x\\$$
    $$\Rightarrow[f(9)]^{2} f^{\prime}(9)=-1\\$$
    $$\Rightarrow f^{\prime}(9)=-\dfrac{1}{(f(9))^{2}}=-\dfrac{1}{9}$$
  • Question 4
    1 / -0
    The value of the definite integral $$\int_{2}^{4}(x(3-x)(4+x)(6-x)$$ $$(10-x)+\sin x) d x$$ equals
    Solution
    Let $$\left.I=\int_{2}^{4}(x(3-x)(4+x)(6-x)(10-x)+\sin x) d x\right) $$  .........(i)
    $$=\int_{2}^{4}((6-x)(3-(6-x))(4+(6-x))(6-(6-x)) $$     .......... $$\because \int_{a}^b f(x) \ dx= \int _{a}^{b} f(a+b-x) \ dx$$

    $$=\int_{2}^{4}((6-x)(x-3)(10-x) x(4+x)+\sin (6-x)) d x$$  .......... (ii)

    Adding equations (1) and $$(2),$$ we get
    $$2 I=\int_{2}^{4}(\sin x+\sin (6-x)) d x \\$$
    $$\quad=(-\cos x+\cos (6-x))_{2}^{4} \\$$
    $$\quad=-\cos 4+\cos 2+\cos 2-\cos 4 \\$$
    $$\quad=2(\cos 2-\cos 4) \\$$
    $$\Rightarrow \quad I=\cos 2-\cos 4$$
  • Question 5
    1 / -0
    Given, $$f(x) = \begin{vmatrix} 0 & {x^2 - \sin x} & {\cos x - 2} \\ {\sin x -x^2} & 0 & {1 - 2x} \\ {2 - \cos x} & {2x - 1} & 0 \end{vmatrix}$$, then $$\displaystyle \int f(x) dx$$ is equal to
    Solution
    We have, $$f(x) = \begin{vmatrix} 0 & {x^2 - \sin x} & {\cos x - 2} \\ {\sin x -x^2} & 0 & {1 - 2x} \\ {2 - \cos x} & {2x - 1} & 0 \end{vmatrix}$$
    $$\Rightarrow$$            $$f(x) = \begin{vmatrix} 0 & {\sin x - x^2} & {2 - \cos x} \\ {x^2 - \sin} & 0 & {2x - 1} \\ {\cos x - 2} & {1 - 2x} & 0 \end{vmatrix} $$
                                                         [Interchanging rows and columns]
    $$\Rightarrow$$            $$f(x) = (-1)^3 \begin{vmatrix} 0 & {x^2 - \sin x} & {\cos x - 2} \\ {\sin x -x^2} & 0 & {1 - 2x} \\ {2 - \cos x} & {2x - 1} & 0 \end{vmatrix}$$
                                                         [Taking (-1) common from each column]
    $$\Rightarrow$$            $$f(x) = - f(x)$$
    $$\Rightarrow$$            $$f(x) = 0$$
    $$\Rightarrow$$  $$ \displaystyle \int f(x) dx = 0$$
  • Question 6
    1 / -0
    Let $$f(x)=\displaystyle \int_{-1}^{x}e^{t^2}dt$$ and $$h(x)=f(1+g(x))$$ where $$g(x)$$ is defined for all $$x, g'(x)$$ exists for all $$x,$$ and $$g(x) < 0$$ for $$x>0.$$ If $$h'(1)=e$$ and $$g'(1)=1,$$ then the possible values which $$g(1)$$ can take 
    Solution
    Given, $$f(x)=\displaystyle \int_{-1}^{x}e^{t^2}dt; h(x)=f(1+g(x)); g(x)<0$$ for $$x>0$$

    Now, $$h(x)=\displaystyle \int_{-1}^{1+g(x)}e^{t^2}dt\quad (given)$$
    Differentiating, we get $$h'(x)=e^{(1+g(x))^2}.g'(x)$$
    Now, $$h'(1)=e$$
    $$\therefore e^{(1+g(1))^2}.g'(1)=e$$
    $$\Rightarrow (1+g(1))^2=1$$
    $$\Rightarrow 1+g(1)=\pm1$$
    $$\Rightarrow g(1)=0\,(not\, possible)$$
    or $$g(1)=-2$$

  • Question 7
    1 / -0
    Let $$f : R \rightarrow R$$ be a function as $$f(x) = (x - 1)(x + 2)(x - 3)(x - 6) - 100$$. If $$g(x)$$ is a polynomial of degree $$\leq 3$$ such that $$\displaystyle \int \frac{g(x)}{f(x)} dx$$ does not contain any logarithm function and $$g(-2) = 10$$. Then

    $$\displaystyle \int \frac{g(x)}{f(x)} dx$$, equals
    Solution
    Here, $$f(x) = (x - 1)(x + 2)(x - 3)(x - 6) - 100$$
                        $$ = (x^2 + 4x + 3) (x^2 - 4x - 12) - 100$$
                        $$ = (x^2 - 4x)^2 - 9(x^2 - 4x) - 136$$
                        $$ = (x^2 - 4x + 8)(x^2 - 4x + 17)$$
    $$\displaystyle \int \frac{g(x)}{f(x)} = \frac{g(x)}{(x^2 - 4x - 17)(x^2 - 4x + 8)}$$
                    $$ = \frac{Ax + B}{x^2 - 4x - 17} + \frac{Cx + D}{x^2 - 4x + 8}$$
    Clearly, $$A, B$$ and $$C$$ must be zero.
    $$\therefore \frac{g(x)}{(x^2 - 4x - 17)(x^2 - 4x + 8)} = \frac{D}{x^2 - 4x + 8}$$
    $$\therefore$$         $$g(x) = D (x^2 - 4x - 17)$$
             $$g(-2) = D (4 + 8 - 17) = -10$$             [given]
    $$\Rightarrow$$        $$\frac{g(x)}{f(x)} = \frac{2 (x^2 - 4x - 17)}{(x^2 - 4x - 17)(x^2 - 4x + 8)} = \frac{2}{x^2 - 4x + 8}$$
    $$\therefore$$ $$\displaystyle \int \frac{g(x)}{f(x)} dx = \displaystyle \int \frac{2}{x^2 - 4x + 8}dx = 2 \displaystyle \int \frac{dx}{(x - 2)^2 + (2)^2}$$
                            $$= 2. \frac{1}{2} \tan^{-1} \left ( \frac{x - 2}{2} \right ) + C = \tan^{-1} \left ( \frac{x - 2}{2} \right ) + C$$
  • Question 8
    1 / -0
    If $$\displaystyle \int_{-2}^{-1} (ax^2-5)dx $$ and $$5+\displaystyle \int_{1}^{2} (bx+c)dx=0, $$ then 
    Solution

  • Question 9
    1 / -0
    The value of the definite integral 
    $$\displaystyle \int_{0}^{\infty} \dfrac{dx}{(1+x^a)(1+x^2)}(a>0)$$ is
    Solution

  • Question 10
    1 / -0

    Directions For Questions

    [passage-header]undefined[/passage-header]If $$I_n = \displaystyle \int_{-\pi}^{\pi} \dfrac{sinnx}{(1+\pi^x)sinx}dx, $$ $$n=0,1,2,..., $$ then[passage-footer]undefined[/passage-footer]

    ...view full instructions

    the value of $$I_{n+2}-I_n$$ is equal to 
    Solution
    Given $$ I_n = \displaystyle \int_{-\pi}^{\pi} \dfrac{sinnx}{(1+\pi^x)sinx}dx \qquad ...(i)$$
    Using $$\displaystyle \int_{a}^{b}f(x)dx=\displaystyle \int_{a}^{b}f(b+a-x)dx,$$ we get
    $$I_n=\displaystyle \int_{-\pi}^{\pi} \dfrac{\pi^x sinnx}{(1+\pi^x) sinx}dx\qquad..(ii)$$

    On adding Eqs.(i) and (ii), we have
    $$2I_n=\displaystyle \int_{-\pi}^{\pi} \dfrac{sinnx}{sinx}dx=2\displaystyle \int_{0}^{\pi} \dfrac{sinnx}{sinx}dx [\because f(x)=\dfrac{sinnx}{sinx}$$ is an even function]
    $$\Rightarrow I_n=\displaystyle \int_{0}^{\pi}\dfrac{sinnx}{sinx}dx$$

    Now, $$I_{n+2}-I_n=\displaystyle \int_{0}^{\pi} \dfrac{sin(n+2)x-sinnx}{sinx}dx$$
    $$=\displaystyle \int_{0}^{\pi} \dfrac{2cos(n+1)x.sinx}{sinx}dx$$
    $$=2\displaystyle \int_{0}^{\pi}cos(n+1)dx=2\left[\dfrac{sin(n+1)x}{(n+1)}\right]_{0}^{\pi}=0\qquad...(iii)$$
    $$\therefore I_{n+2}-I_n=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now