Self Studies

Integrals Test - 45

Result Self Studies

Integrals Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the definite integral $$\displaystyle \int_{0}^{\pi/2}sinx\space sin2x\space sin3xdx$$ is equal to  
    Solution
    $$=\displaystyle \int_{0}^{\pi/2}\sin x\sin2x\sin3xdx$$
    $$=\displaystyle \int_{0}^{\pi/2}sin\left(\dfrac{\pi}{2}-x\right) sin2\left(\dfrac{\pi}{2}-x\right) sin3\left(\dfrac{\pi}{2}-x\right)dx$$
    $$\Rightarrow I=\displaystyle \int_{0}^{\pi/2}-cosxsin2xcos3xdx$$
    $$\therefore 2I=\displaystyle \int_{0}^{\pi/2}-sin2x(cosxcos3x-sin3xsinx)dx$$
    $$=\displaystyle \int_{0}^{\pi/2}-sin2xcos(4x)dx$$
    $$=-\displaystyle \int_{0}^{\pi/2}sin2x(2cos^22x-1)dx$$
    Put $$cos2x=t \Rightarrow -sin2x\times 2dx=dt$$
    $$\therefore 2I=\displaystyle \int_{1}^{-1}\dfrac{1}{2}(2t^2-1)dt=\dfrac{1}{2}\left[ \dfrac{2t^3}{3}-t \right]^{-1}$$
    $$=\dfrac{1}{2}\left[ \dfrac{2}{3}(-1)^3-(-1)-\left( \dfrac{2}{3}(1)^3 -1 \right)\right]$$
    $$=\dfrac{1}{2}\left[ -\dfrac{2}{3}+1-\dfrac{2}{3}+1\right]=\dfrac{1}{2}\left[\dfrac{2}{3}\right]\qquad I\Rightarrow \dfrac{1}{6}$$
  • Question 2
    1 / -0
    If $$\displaystyle \int f(x) dx = F(x)$$, then $$\displaystyle \int x^3 f(x^2) dx$$ is equal to
    Solution
    We have, $$\displaystyle \int f(x) dx = F(x)$$
    $$\therefore \displaystyle \int x^3 f(x^2) dx = \frac{1}{2} \displaystyle \int \underbrace{x^2} \underbrace{f(x^2) d(x^2)}$$
                                                   I             II
                                  $$ = \frac{1}{2} [x^2 F(x^2) - \displaystyle \int F(x^2) d (x^2)]$$
  • Question 3
    1 / -0

    Directions For Questions

    $$f(x)=\displaystyle \int_{0}^{x}(4t^4-at^3)dt $$ and $$g(x)$$ is quadratic satisfying $$g(0)+6=g'(0)-c=g''(c)+2b=0, y=h(x) \space and y=g(x)$$ intersect in 4 distinct points with abscissae $$x_i;i=1,2,3,4 $$ such that $$\displaystyle \sum \dfrac{i}{x_i}=8,a,b,c \in R^+ and h(x) = f'(x).$$

    ...view full instructions

    Abscissae of point of intersection are in 
    Solution
    We have $$g(x)=g(0)+xg'(0)+\dfrac{x^2}{2}g''(0)=-bx^2+cx-6$$
    $$h(x)=g(x)=4x^4-ax^3+bx^2-cs+6=0 $$ has 4 distinct real roots. Using Descarte's rule of signs.
    Given biquadratic equation has 4 distinct positive roots. 
    Let the roots be $$x_1,x_2,x_3$$ and $$x_4$$
    Now, $$\dfrac{\dfrac{1}{x_1}+\dfrac{2}{x_2}|+\dfrac{3}{x_3}+\dfrac{4}{x_4}}{4}\geq \sqrt{\dfrac{24}{x_1x_2x_3x_4}}$$
    $$\Rightarrow 2\geq2 \Rightarrow \dfrac{1}{x_1}=\dfrac{2}{x_2}=\dfrac{3}{x_3}=\dfrac{4}{x_4}=k $$
    $$\Rightarrow \dfrac{1}{x_1}.\dfrac{2}{x_2}.\dfrac{3}{x_3}.\dfrac{4}{x_4}=k^4$$
    $$\Rightarrow \dfrac{24}{3/2}=k^4 \Rightarrow k=2$$
    $$\therefore$$ Roots are $$\dfrac{1}{2},1,\dfrac{3}{2}$$ and $$2.$$ Also,a=20 and c=25
  • Question 4
    1 / -0
    The value of
    $$\int_{2}^{5} \dfrac {\sqrt x}{\sqrt {x} + \sqrt {7-x}} dx$$
    is :
    Solution
    Let 
    $$I = \int_{2}^{5} \dfrac {\sqrt x}{\sqrt {x} + \sqrt {7-x}} dx$$ .................(1)
    $$\Rightarrow \int_{2}^{5} \dfrac {\sqrt 2+5-x}{\sqrt {2+5-x} + \sqrt {7-2-5+x}} dx$$
    $$\Rightarrow \int_{2}^{5} \dfrac {\sqrt 7 -x}{\sqrt {7-x} + \sqrt {x}} dx$$ ............(2)

    Adding equation (1) and (2)
    $$2I = \int_{2}^{5} \dfrac {\sqrt x + \sqrt{7-x}}{\sqrt {7-x} + \sqrt {x}} dx$$
    = $$\int_{2}^{5} 1 dx = []_{2}^{5} = 5-2 = 3$$
    $$I = \dfrac {3}{2}$$

    hence, $$\int_{2}^{5} \dfrac {\sqrt x}{\sqrt {x} + \sqrt {7-x}} dx=\dfrac{3}{2}$$
    option C is correct.
  • Question 5
    1 / -0
    If $$A(x) = \int_{0}^{x} \theta ^2 d\theta$$
    then value of $$A(3)$$ will be :
    Solution
    $$A(x) = \int_{0}^{x} \theta ^2 d\theta$$
    = $$[\dfrac {\theta ^3}{3}]_{0}^{x}$$
    = $$\dfrac {1}{3} x^3$$
    $$\Rightarrow A(3) = \dfrac {1}{3} 3^3$$
    = $$\dfrac {1}{3} \times 3 \times 3 \times 3$$
    = $$3 \times 3$$
    = $$9$$

    Thus, option A is correct
  • Question 6
    1 / -0
    $$\int_{a-c}^{b-c} f(x+c) dx $$ is:
  • Question 7
    1 / -0
    $$\int_{0}^{log 5} \displaystyle \frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+3}  dx =$$
    Solution
    Let $$I=\int { \cfrac { { e }^{ x }\sqrt { { e }^{ x }-1 }  }{ { e }^{ x }+3 }  } $$
    Substitute $$t=e^{ x }\Rightarrow dt=e^{ x }dx$$, we get
    $$I=\int { \cfrac { \sqrt { t-1 }  }{ t+3 } dt } $$
    Substitute $$u=\sqrt { t-1 } \Rightarrow du=\cfrac { 1 }{ 2\sqrt { t-1 }  } dt$$, we get
    $$I=2\int { \cfrac { { u }^{ 2 } }{ { u }^{ 2 }+4 } du } =2\int { \left( 1-\cfrac { 4 }{ { u }^{ 2 }+4 }  \right) du } =2\int { du } -2\int { \cfrac { 4 }{ { u }^{ 2 }+4 }  } du\\ =2u-4{ tan }^{ -1 }\left( \cfrac { u }{ 2 }  \right) =2\sqrt { t-1 } -4{ tan }^{ -1 }\left( \cfrac { \sqrt { t-1 }  }{ 2 }  \right) \\ =2\sqrt { e^{ x }-1 } -4{ tan }^{ -1 }\left( \cfrac { \sqrt { e^{ x }-1 }  }{ 2 }  \right) $$
    Therefore,
    $$\int _{ 0 }^{ \log { 5 }  }{ Idx } ={ \left[ 2\sqrt { e^{ x }-1 } -4{ tan }^{ -1 }\left( \cfrac { \sqrt { e^{ x }-1 }  }{ 2 }  \right)  \right]  }_{ 0 }^{ \log { 5 }  }=4-\pi $$

  • Question 8
    1 / -0
    If  $$\displaystyle I_n=\int_{0}^{\tfrac{\pi}{4}} \tan^nx\sec^2xdx,$$ then  $$I_1,   I_2,  I_3..$$ are  in
    Solution
    $$\displaystyle I_n=\int_{0}^{\tfrac{\pi}{4}} \tan^nx\sec^2xdx,$$
    Substituting $$t=\tan x \Rightarrow dt =\sec^2xdx$$
    $$I_n=\int_{0}^{1}t^ndt$$ =$$\dfrac{1}{n\;+\;1}$$

    $$\Rightarrow I_n\;=\;\dfrac{1}{n\;+\;1}$$

    Reciprocal of the terms $$I_1,I_2,I_3..$$ are  in A.P, therefore $$\dfrac{1}{n+1}, \dfrac{1}{n+2}, \dfrac{1}{n+3}$$ are in H.P.
    Hence, option 'C' is correct.
  • Question 9
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{\pi/4}\frac{ {s}i {n}\theta+ {c} {o} {s}\theta}{9+16 {s}i {n}2\theta} \ {d}\theta $$
    Solution

    $$\displaystyle \int_{0}^{\pi/ 4} \dfrac {\sin \theta + \cos \theta}{9 + 16\sin 2\theta} d\theta$$

    Let $$\sin \theta - \cos \theta = t$$

    $$\therefore (\cos \theta + \sin \theta) d\theta = dt$$

    $$= \displaystyle \int_{-1}^{0} \dfrac {dt}{9 + 16(1 – t^{2})} (\because t^{2} = 1 – 2\cdot \sin \theta \cdot \cos \theta)$$

    $$= \displaystyle \int_{-1}^{0} \dfrac {dt}{25 – 16t^{2}}$$

    $$= \dfrac {1}{16} \displaystyle \int_{-1}^{0} \dfrac {dt}{\left (\dfrac {5}{4}\right )^{2} – t^{2}}$$

    $$= \dfrac {1}{16}\times \dfrac {1}{2\times \dfrac {5}{4}}\left [ln \left |\dfrac {\dfrac {5}{4} +t}{\dfrac {5}{4} – t}\right |\right ]_{-1}^{0}$$

    $$\left (\because \displaystyle \int \dfrac {1}{a^{2} – x^{2}} dx = \dfrac {1}{2a} ln \left |\dfrac {a + x}{a – x}\right | + c\right )$$

    $$= \dfrac {1}{40} \left [ln |1| - ln \left |\dfrac {\dfrac {1}{4}}{\dfrac {9}{4}}\right |\right ]$$

    $$= \dfrac {1}{40} ln 9 = \dfrac {ln 3}{20}$$

    $$\therefore \displaystyle \int_{0}^{\pi/ 4} \dfrac {\sin \theta + \cos \theta}{9 + 16 \sin 2\theta} d\theta = \dfrac {ln 3}{20}$$.

  • Question 10
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{\pi}\frac{dx}{5+4\cos x}$$
    Solution
    Putting $$\cos{x}=\dfrac{1-\tan^2{(x/2)}}{1+\tan^2{(x/2)}}$$,

    $$\displaystyle\int_{0}^{\pi}\dfrac{dx}{5+4\dfrac{1-\tan^2{(x/2)}}{1+\tan^2{(x/2)}}}$$

    $$=\displaystyle\int_{0}^{\pi} \dfrac{\{1+\tan^2{(x/2)\}}dx}{9+\tan^2{(x/2)}}$$

    $$=\displaystyle\int_{0}^{\pi} \dfrac{\sec^2{(x/2)}dx}{\tan^2{(x/2)}+3^2}$$

    Let , $$z=\tan{(x/2)}\implies dz=\dfrac{1}{2}\sec^2{(x/2)}dx\implies \sec^2{(x/2)}dx=2dz$$

    And when, $$x=0, z=0$$ and when $$x=\pi, z=\infty$$

    Hence, integration becomes:-

    $$\displaystyle\int_{0}^{\infty} \dfrac{2dz}{z^2+3^2}$$

    $$=\dfrac{2}{3}\left[\tan^{-1} {\dfrac{z}{3}}\right]_{0}^{\infty}$$

    $$=\dfrac{2}{3}\left[\tan^{-1} {\infty}-\tan^{-1} {0}\right]$$

    $$=\dfrac{2}{3}\left(\dfrac{\pi}{2}-0\right)$$

    $$=\dfrac{\pi}{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now