Self Studies

Integrals Test - 46

Result Self Studies

Integrals Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\int ^{\pi /2}_{-\pi /2} cost . \sin(2t-\displaystyle \frac{\pi}{4})dt=$$
    Solution
    $$I=\int { \left( cost \right) \left( sin\left( 2t-\cfrac { \pi  }{ 4 }  \right)  \right)  } dt=-\int { sin\left( \cfrac { \pi  }{ 4 } -2t \right) \left( cost \right) dt } \\ =-\cfrac { 1 }{ 2 } \int { \left( sin\left( \cfrac { 1 }{ 4 } \left( \pi -12t \right)  \right) +sin\left( \cfrac { 1 }{ 4 } \left( \pi -4t \right)  \right)  \right) dt } \\ =-\cfrac { 1 }{ 2 } \int { sin\left( \cfrac { 1 }{ 4 } \left( \pi -12t \right)  \right) dt } -\cfrac { 1 }{ 2 } \int { sin\left( \cfrac { 1 }{ 4 } \left( \pi -4t \right)  \right) dt } $$
    Let $${ I }={ I }_{ 1 }+{ I }_{ 2 }$$, such that
    $${ I }_{ 1 }=-\cfrac { 1 }{ 2 } \int { sin\left( \cfrac { 1 }{ 4 } \left( \pi -12t \right)  \right) dt } $$
    Substituting $$x=\pi -4t\Rightarrow dx=-4dt$$
    $${ I }_{ 1 }=\cfrac { 1 }{ 8 } \int { sin\cfrac { x }{ 4 } dx } =-\cfrac { 1 }{ 2 } cos\cfrac { x }{ 4 } =-\cfrac { 1 }{ 2 } sin\left( 3t+\cfrac { \pi  }{ 4 }  \right) $$ ...(1)
    And 
    $${ I }_{ 2 }=-\cfrac { 1 }{ 2 } \int { sin\left( \cfrac { 1 }{ 4 } \left( \pi -4t \right)  \right) dt } $$
    Substituting $$y=\pi -12t\Rightarrow dy=-12dt$$, we get
    $${ I }_{ 2 }=\cfrac { 1 }{ 24 } \int { sin\cfrac { y }{ 4 } dy } =-\cfrac { 1 }{ 6 } cos\cfrac { y }{ 4 } \quad =-\cfrac { 1 }{ 6 } sin\left( t+\cfrac { \pi  }{ 4 }  \right) $$...(2)
    Therefore from (1) and (2)
    $$\int _{ -\cfrac { \pi  }{ 2 }  }^{ \cfrac { \pi  }{ 2 }  }{ \left( cott \right) sin\left( 2t-\cfrac { \pi  }{ 4 }  \right) dt } =\left[ -\cfrac { 1 }{ 2 } sin\left( 3t+\cfrac { \pi  }{ 4 }  \right) -\cfrac { 1 }{ 6 } sin\left( t+\cfrac { \pi  }{ 4 }  \right)  \right] _{ -\cfrac { \pi  }{ 2 }  }^{ \cfrac { \pi  }{ 2 }  }=-\cfrac { \sqrt { 2 }  }{ 3 } $$
  • Question 2
    1 / -0

    $$\displaystyle \int_{0}^{a}\frac{dx}{x+\sqrt{a^{2}-x^{2}}}=$$
    Solution
    $$\displaystyle I=\int _{ 0 }^{ a }{ \cfrac { dx }{ x+\sqrt { { a }^{ 2 }-{ x }^{ 2 } }  }  } $$
    Substituting $$x=a\sin t\Rightarrow dx=a\cos tdt$$
    $$\displaystyle I=\int _{ 0 }^{ \cfrac { \pi  }{ 2 }  }{ \cfrac { \cos tdt }{ \sin t+\cos t }  } $$   ...(1)
    Using property $$\int _{ a }^{ b }{ f\left( x \right) dx } =\int _{ a }^{ b }{ f\left( a+b-x \right) dx }$$
    $$\displaystyle I=\int _{ 0 }^{ \cfrac { \pi  }{ 2 }  }{ \cfrac { \sin tdt }{ \cos t+\sin t }  } $$   ...(2)
    Adding (1) and (2), we get
    $$\displaystyle 2I=\int _{ 0 }^{ \cfrac { \pi  }{ 2 }  }{ dt } =\cfrac { \pi  }{ 2 } \Rightarrow I=\cfrac { \pi  }{ 4 } $$
  • Question 3
    1 / -0

    $$\displaystyle \int_{0}^{\pi/2}\sqrt{\cos x}\sin^{5}xdx=$$
    Solution

    $$\int_{0}^{\dfrac{\pi}{2}} \sqrt{cos  x}sin^5  x   dx$$
    $$\int_{0}^{\dfrac{\pi}{2}}\sqrt{cos  x}(sin^4x)sin x   dx$$
    $$-\int_{0}^{\dfrac{\pi}{2}}\sqrt{cos   x}(1-cos^2  x)^2d cos x$$
    $$-\left [ \int_{0}^{\dfrac{\pi}{2}}\sqrt{cos  x}  dcos  x+\int_{0}^{\dfrac{\pi}{2}}\sqrt{cos  x}  cos^4 x  dx  -  2\int_{0}^{\dfrac{\pi}{2}}\sqrt{cos  x}  cos^2 x   dx \right ]$$
    $$-\left [ \dfrac{2}{3}  cos^{\dfrac{3}{2}} x \int_{0}^{\dfrac{\pi}{2}}+\dfrac{2}{11}  cos^{\dfrac{11}{2}}x\int_{0}^{\dfrac{\pi}{2}}-2(\dfrac{2}{7}) cos^{\dfrac{7}{2}}x \int_{0}^{\dfrac{\pi}{2}} \right ]$$
    $$=-\left [\dfrac{2}{3} (-1)+\dfrac{2}{11}(-1)-2(\dfrac{2}{7})(-1)\right ]$$
    $$=\dfrac{64}{231}$$

  • Question 4
    1 / -0
    $$\displaystyle \int_{0}^{\pi/2}\frac{1}{a+bcosx}dx=$$, where $$a>|b|$$
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{ \cfrac { \pi  }{ 2 }  }{ \cfrac { 1 }{ a+b\cos x } dx } $$
    $$\tan\left( \cfrac { x }{ 2 }  \right) =t\Rightarrow \cfrac { 1 }{ 2 } { \sec }^{ 2 }\left( \cfrac { x }{ 2 }  \right) dx=dt$$
    Gives $$\cos x=\cfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } } ,dx=\cfrac { 2dt }{ 1+{ t }^{ 2 } } $$
    $$\displaystyle I=\int _{ 0 }^{ 1 }{ \cfrac { 1 }{ a+b\left(\cfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } }\right) } \cfrac { 2dt }{ 1+{ t }^{ 2 } }  } =\cfrac { 2 }{ a+b } \int _{ 0 }^{ 1 }{ \cfrac { 1 }{ \cfrac { { t }^{ 2 }\left( a-b \right)  }{ a+b } +1 } dt } $$
    Substitute $$\cfrac { t\sqrt { a-b }  }{ \sqrt { a+b }  } =u\Rightarrow \cfrac { dt\sqrt { a-b }  }{ \sqrt { a+b }  } =du$$

    $$\displaystyle I=\cfrac { 2 }{ \sqrt { a-b } \sqrt { a+b }  } \int _{ 0 }^{ \cfrac { \sqrt { a-b }  }{ \sqrt { a+b }  }  }{ \cfrac { 1 }{ 1+{ u }^{ 2 } } du }$$

    $$ ={ \left[ \cfrac { 2{ \tan }^{ -1 }u }{ \sqrt { a-b } \sqrt { a+b }  }  \right]  }_{ 0 }^{ \cfrac { \sqrt { a-b }  }{ \sqrt { a+b }  }  }
    =\cfrac { 2{ \tan }^{ -1 }\cfrac { \sqrt { a-b }  }{ \sqrt { a+b }  }  }{ \sqrt { a-b } \sqrt { a+b }  } -0\\ =\cfrac { 2 }{ \sqrt { { a }^{ 2 }-{ b }^{ 2 } }  } { \tan }^{ -1 }\sqrt{\cfrac {a-b}{a+b}} $$
  • Question 5
    1 / -0
    $$\displaystyle \int_{1}^{2}\mathrm{x}^{2\mathrm{x}}[1+\log \mathrm{x}]\mathrm{d}\mathrm{x}=$$
    Solution
    Let $$ \displaystyle {x}^{x} = t $$
    Diiferentiating both sides,
    $$ \displaystyle {x}^{x}(1 + \log x) dx = dt $$
    Substituting the above obtained values back into the expression,
    $$ \displaystyle \int {x}^{2x}(1 + log x) dx = \int t dt $$
    $$ \displaystyle =  \frac{{t}^{2}}{2} + c $$
    Putting the value of t back, we get the integral as
    $$ \displaystyle  \frac{{({x}^{x})}^{2}}{2} + c $$
    Substituting the limits from 1 to 2, we get
     $$= \displaystyle  \left( \frac{{({2}^{2})}^{2}}{2} \right) - \left( \frac{{({1}^{1})}^{2}}{2}\right) $$
    .
    $$ \displaystyle = 8 -  \frac{1}{2} $$
    .
    $$ \displaystyle =  \frac{15}{2} $$

  • Question 6
    1 / -0
    lf $$\displaystyle \int_{0}^{\infty}e^{-\mathrm{x}^{2}}\mathrm{d}\mathrm{x}=\frac{\sqrt{\pi}}{2}$$, then $$\displaystyle \int_{0}^{\infty}e^{-ax^{2}}dx,\ \mathrm{a}>0$$ is
    Solution
    $$\int _{ 0 }^{ \infty  }{ { e }^{ { -ax }^{ 2 } } } dx\\ =\int _{ 0 }^{ \infty  }{ { e }^{ -(\sqrt { a } x)^{ 2 } } } dx$$
    Let, $$\sqrt { a } .{ x }=1$$
    $$\sqrt { a } .dx=dt\\ dx=\cfrac { dt }{ \sqrt { a }  } \\ I=\int _{ 0 }^{ \infty  }{ e^{ -t^{ 2 } } } .\cfrac { dt }{ \sqrt { a }  } \\ =\cfrac { 1 }{ \sqrt { a }  } \int _{ 0 }^{ \infty  }{ e^{ -t^{ 2 } } } dt\\ =\cfrac { 1 }{ \sqrt { a }  } \times \cfrac { \sqrt { \pi  }  }{ 2 } \\ =\cfrac { 1 }{ 2 } \sqrt { \cfrac { \pi  }{ a }  } $$
    Hence the correct answer is $$\cfrac { 1 }{ 2 } \sqrt { \cfrac { \pi  }{ a }  } $$
  • Question 7
    1 / -0
    Observe the following Lists
    List-IList-II
    A: $$\displaystyle \int_{-2}^{2}\frac{1}{4+x^{2}}dx$$1) $$\displaystyle \frac{\pi}{3}$$
    B: $$\displaystyle \int_{1}^{2}\frac{1}{x\sqrt{x^{2}-1}}dx$$2) 0
    C: $$\displaystyle \int_{0}^{\pi}\cos 3x.\cos 2xdx$$3) $$\displaystyle \frac{\pi}{4}$$
    4) $$\displaystyle \frac{\pi}{2}$$
    Solution
    A) $$\displaystyle \int _{ -2 }^{ 2 }{ \frac { 1 }{ 4+{ x }^{ 2 } }  } dx=\left[ \frac { 1 }{ 2 } \tan ^{ -1 }{ \frac { x }{ 2 }  }  \right] _{ -2 }^{ 2 }$$
    $$\displaystyle =\left[ \frac { 1 }{ 2 } \tan ^{ -1 }{ 1 } -\frac { 1 }{ 2 } \tan ^{ -1 }{ \left( -1 \right)  }  \right] =\frac { \pi  }{ 8 } +\frac { \pi  }{ 8 } =\frac { \pi  }{ 4 } $$

    B) $$\displaystyle \int _{ 1 }^{ 2 }{ \frac { 1 }{ x\sqrt { { x }^{ 2 }-1 }  }  } dx=\left[ \sec ^{ -1 }{ x }  \right] _{ 1 }^{ 2 }$$
    $$\displaystyle =\left[ \sec ^{ -1 }{ 2 } -\sec ^{ -1 }{ 1 }  \right] =\left[ \frac { \pi  }{ 3 } -0 \right] =\frac { \pi  }{ 3 } $$

    C) $$\displaystyle \int _{ 0 }^{ \pi  }{ \cos { 3x } \cos { 2x }  } dx=\frac { 1 }{ 2 } \int _{ 0 }^{ \pi  }{ \left( \cos { x } +\cos { 5x }  \right)  } dx$$
    $$\displaystyle =\frac { 1 }{ 10 } \left[ 5\sin { x } +\sin { 5x }  \right] _{ 0 }^{ \pi  }=0$$

  • Question 8
    1 / -0
    If $$\displaystyle \int_{0}^{\pi/3}\frac{\cos x}{3+4\sin x}dx=k\log(\frac{3+2\sqrt{3}}{3})$$, then $$\mathrm{k}$$ is equal to
    Solution
    $$\displaystyle\int_{0}^{\pi/3}\dfrac{\cos{x}}{3+4\sin{x}}dx$$

    Let $$z=3+4\sin{x}\implies dz=4\cos{x}dx\implies \cos{x}dx=\dfrac{dz}{4}$$

    When $$ x=0,z=3$$ and when $$x=\dfrac{\pi}{3},z=3+2\sqrt{3}$$

    Hence, integration becomes:-

    $$\dfrac{1}{4}\displaystyle\int_{3}^{3+2\sqrt{3}}\dfrac{1}{z} dz$$

    $$=\dfrac{1}{4}\left[\log{z}\right]_{3}^{3+2\sqrt{3}}$$

    $$=\dfrac{1}{4}\log{\left(\dfrac{3+2\sqrt{3}}{3}\right)}$$

    $$\implies k=\dfrac{1}{4}$$

    Hence, answer is option-(C).
  • Question 9
    1 / -0
    The value of the integral 
    $$\displaystyle \int_{0}^{3\alpha}\text{cosec}(x -\alpha)\text{cosec}(x-2\alpha) dx$$ is
    Solution
    $$\displaystyle \int_{0}^{3\alpha}\text{cosec}(x -\alpha)\text{cosec}(x-2\alpha) dx$$

    $$=\displaystyle \int_{0}^{3\alpha}\frac{1}{\sin (x-\alpha)\sin (x-2\alpha)}dx$$

    $$\displaystyle \frac{1}{\sin \alpha}\int_{0}^{3\alpha} \displaystyle \frac{\sin [(x-\alpha)-(x-2\alpha)]}{\sin (x-\alpha)\sin (x-2\alpha)}dx$$

    $$\Rightarrow \displaystyle \frac{1}{\sin \alpha}\int_{0}^{3\alpha}[\cot(x-2\alpha)-\cot(x-\alpha)]dx$$

    $$=\displaystyle \frac{1}{\sin \alpha}(\log  [\sin (x-2\alpha)]|_{0}^{3\alpha}-\log  (\sin (x-\alpha))|_{0}^{3\alpha})$$

    $$=\displaystyle \frac{1}{\sin \alpha}[\log  (\sin \alpha)-\log  (\sin (-2\alpha))-\log  (\sin (2\alpha))+\log  (\sin (-\alpha))]$$

    $$=2\displaystyle \frac{1}{\sin \alpha}\log  \left | \displaystyle \frac{\sin \alpha}{2\sin \alpha \cos  \alpha} \right |$$

    $$=2 \text{cosec}\alpha\ \log\left(\dfrac{1}{2} \sec\alpha\right)$$
  • Question 10
    1 / -0
    If $$I_{n}=\displaystyle \int_{0}^{\frac{\pi}{4}}\tan^{n} dx,$$ then $$\dfrac{1}{I_{2}+I_{4}},\dfrac{1}{I_{3}+I_{5}},\dfrac{1}{I_{4}+I_{6}}\cdots$$ form
    Solution
    $$ I_n = \displaystyle \int_{0}^{\pi/4}\tan^{n}x\ dx$$

    $$I_{n+2}=\displaystyle \int_{0}^{\pi/4}\tan^{n}x(\tan^{2}x)dx$$

    $$=\displaystyle \int_{0}^{\pi/4}\tan^{n}x(\sec^{2}x-1)dx$$

    $$=\displaystyle \int_{0}^{\pi/4}\tan^{n}x\ d(\tan x)-I_n$$

    $$\Rightarrow I_{n+2} + I_n=\dfrac{1}{n+1}$$

    $$I_{2}+I_{4}=\dfrac13$$

    $$I_{3}+I_{5}=\dfrac14$$

    $$I_{4}+I_{6}=\dfrac15$$

    $$So,\dfrac{1}{I_{2}+I_{4}};\dfrac{1}{I_{3}+I_{5}};\dfrac{1}{I_{4}+I_{6}}$$ forms an AP
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now