Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Let f be a function defined for every x, such that f'' = -f ,f(0)=0, f' (0) = 1, then f(x) is equal to

  • Question 2
    1 / -0

    Let $$\displaystyle \frac{d}{dx}F(x)=\frac{e^{{s}{m}{x}}}{x}$$ , $$x>0$$. lf $$\displaystyle \int_{1}^{4}\frac{3}{x}e^{{s}{m}{x}^{3}}dx=F(k)-F(1)$$, then one of the possible values of $${k}$$ is

  • Question 3
    1 / -0

    $$\displaystyle \int_{0}^{1}\displaystyle \frac{x(2x^{2}+1)}{x^{8}+2x^{6}-x^{2}+1}dx=$$

  • Question 4
    1 / -0

    If $$\mathrm{a}>\mathrm{b}$$ then $$\displaystyle \int_{0}^{\pi}\frac{\mathrm{d}\mathrm{x}}{\mathrm{a}+\mathrm{b}\sin \mathrm{x}}=$$

  • Question 5
    1 / -0

    If $$I_{n}=\displaystyle \int_{0}^{\infty}e^{-x}x^{n-1} dx$$, then $$\displaystyle \int_{0}^{\infty}e^{-\lambda x}x^{n-1} dx$$ is equal to?

  • Question 6
    1 / -0

    The value of $$\displaystyle \int_{0}^{\pi}\dfrac {dx}{1+2sin^2x}$$ is

  • Question 7
    1 / -0

    If $$f(x) = x - x^2 +1$$ & $$g(x)=max\left \{ f(t) ;0\leq t< x \right \}$$, then $$\overset {1}{\underset { 0 }{ \int } }  g (x) dx = ?$$

  • Question 8
    1 / -0

    Directions For Questions

    If $$a=\sum_{r=1}^{\infty }\frac{1}{2r^{2}-r},b=\sum_{r=1}^{\infty }\frac{1}{2r^{2}+r},c=\sum_{r=1}^{\infty }\frac{1}{4r^{3}-1}$$, then answer the following 

    ...view full instructions

    What is the value of a + b ?

  • Question 9
    1 / -0

    The value of $$\displaystyle {\int}_0^{\pi}\frac{dx}{1+2 \sin^2 x}$$ is

  • Question 10
    1 / -0

    $$\displaystyle \int_{- \dfrac{\pi}{2}}^{\dfrac{\pi}{2}}\sin^{2}x. \cos^{3} x dx$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now