$$\displaystyle I=\int _{ -\pi }^{ \pi }{ { \left( \cos ax-\sin bx \right) }^{ 2 }dx } \ =\int _{ -\pi }^{ \pi }{ { \sin }^{ 2 }bx\>dx } -2\int _{ -\pi }^{ \pi }{ \left( \left( \cos ax \right) \left( \sin bx \right) \right) dx } +\int _{ -\pi }^{ \pi }{ { \cos }^{ 2 }ax\>dx } $$
Let $$\displaystyle I={ I }_{ 1 }+{ I }_{ 2 }+{ I }_{ 3 }$$ ...(1)
Such that, $$\displaystyle{ I }_{ 1 }=\int _{ -\pi }^{ \pi }{ { \sin }^{ 2 }bxdx } $$
Substituting $$bx=t\Rightarrow b\>dx=dt$$
We get, $$\displaystyle{ I }_{ 1 }=\cfrac { 1 }{ b } \int _{ -\pi b }^{ \pi b }{ { \sin }^{ 2 }tdt } =\cfrac { 1 }{ b } \int _{ -\pi b }^{ \pi b }{ \left( \cfrac { 1 }{ 2 } -\cfrac { 1 }{ 2 } \cos2t \right) dt } $$
$$\displaystyle=\cfrac { 1 }{ b } { \left[ \cfrac { t }{ 2 } -\cfrac { \sin2t }{ 4 } \right] }_{ -\pi b }^{ \pi b }=\pi -\cfrac { \sin\left( 2\pi b \right) }{ 2b } $$ ...(2)
$$\displaystyle{ I }_{ 2 }=-2\int _{ -\pi }^{ \pi }{ \left( \left( \cos ax \right) \left( \sin bx \right) \right) dx } $$
As $$\left( \cos ax \right) \left( \sin bx \right) $$ is an odd function,
$${ I }_{ 2 }=0$$ ...(3)
$$\displaystyle{ I }_{ 3 }=\int _{ -\pi }^{ \pi }{ { \cos }^{ 2 }axdx } $$
Substituting, $$ax=t\Rightarrow adx=dt$$, we get
$$\displaystyle{ I }_{ 3 }=\cfrac { 1 }{ a } \int _{ -\pi a }^{ \pi a }{ { \cos }^{ 2 }tdt } =\cfrac { 1 }{ a } \int _{ -\pi a }^{ \pi a }{ \left( \cfrac { 1 }{ 2 } \cos2t+\cfrac { 1 }{ 2 } \right) dt } $$
$$\displaystyle=\cfrac { 1 }{ a } { \left[ \cfrac { t }{ 2 } +\cfrac { \sin2t }{ 4 } \right] }_{ -\pi a }^{ \pi a }=\cfrac { \sin\left( 2\pi a \right) }{ 2a } +\pi $$ ...(4)
Substituting (2), (3) and (4) in (1), we get
$$\displaystyle I=\cfrac { \sin\left( 2\pi a \right) }{ 2a } -\cfrac { \sin\left( 2\pi b \right) }{ 2b } +2\pi =0+0+2\pi =2\pi $$
Hence, option 'D' is the correct answer.