Self Studies

Integrals Test - 48

Result Self Studies

Integrals Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \int_{\frac{5}{2}}^{5}\frac{\sqrt{(25-x^2)^3}}{x^4}\:dx$$ is equal to
    Solution
    $$\displaystyle I=\int_{\frac{5}{2}}^{5}\frac{\sqrt{(25-x^2)^3}}{x^4}dx$$
    Let $$x= 5\sin\theta$$
    $$\displaystyle \therefore dx= 5 \cos\theta d\theta$$
    $$\displaystyle \therefore I=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\frac{5^3\cos ^3\theta.5\cos\theta }{5^4 \sin^4\theta}d\theta$$
    $$\displaystyle =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\cot^2 \theta(\ cosec^2\theta -1)d\theta$$
    $$\displaystyle =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\cot^2

    \theta\ cosec^2\theta

    d\theta-\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\cot^2 \theta d \theta$$
    $$\displaystyle =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\cot^2

    \theta\ cosec^2\theta d\theta- \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(\

    cosec^2 \theta-1)$$
    $$\displaystyle =\left [ -\frac{\cot^3\theta}{3} +\cot\theta+\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$$
    $$\displaystyle =-0+0+\frac{\pi}{2}-\left ( -\frac{3\sqrt{3}}{3}+\sqrt{3}+\frac{\pi}{6} \right )$$ $$\displaystyle =\frac{\pi}{3}$$
  • Question 2
    1 / -0
    $$\displaystyle \int_{0}^{1}\frac{3^{x+1}-4^{x-1}}{12^{x}}dx=$$

    Solution
    $$\int_{0}^{1}\dfrac{3^{x+1}-4^{x-1}}{12^{x}} dx$$ $$=\displaystyle \int_{0}^{1}(\dfrac{3}{4^{\mathrm{x}}}-\dfrac{1}{4}. \displaystyle \dfrac{1}{3^{\mathrm{x}}}) dx$$

    $$=\left \{ 3\dfrac{\dfrac{1}{4^{x}}}{(log\dfrac{1}{4})}-\dfrac{1}{4} \dfrac{\dfrac{1}{3^{x}}}{log\left ( \dfrac{1}{3} \right )}\right \}_{0}^{1}$$

    $$=\displaystyle \dfrac{3(\dfrac{1}{4}-1)}{-\log_{\mathrm{e}}4}-\dfrac{1}{4}\dfrac{(\dfrac{1}{3}-1)}{-\log_{\mathrm{e}}3}$$

    $$=\displaystyle \dfrac{9}{4}\log_{4}\mathrm{e}-\dfrac{1}{6}\log_{3}\mathrm{e}$$

    Ans: B
  • Question 3
    1 / -0
    The value of $$\int _{-\pi /2}^{\pi /2}\left (psin^3 x+qsin^4 x +r sin^5 x  \right )$$ does not depend on

    Solution

    $$\overset {b}{\underset {a}{\int}}f(x) dx=\overset {b}{\underset {a}{\int}}f(a+b-x)$$
  • Question 4
    1 / -0
    If $$ \displaystyle \int_{0}^{1} \frac{\tan^{-1} x}{x}dx$$  is equal to
    Solution
    $$ \displaystyle I= \int_{0}^{1} \frac{\tan^{-1} x}{x}dx$$
    Putting $$x=\tan \theta$$ or $$dx= \sec^2 \theta d\theta$$, we get
    $$I\displaystyle =\int_{0}^{\frac{\pi}{4}}\frac{\theta}{\tan \theta}\sec^2 \theta d \theta$$
    $$\displaystyle =\int_{0}^{\frac{\pi}{4}}\frac{2\theta}{\sin 2\theta}d\theta$$
    Putting  $$2\theta=t$$,i.e.,$$2d\theta=dt$$, we get
    $$I\displaystyle =\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\frac{t}{\sin t}dt$$
    $$\displaystyle =\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\frac{x}{\sin x}dx$$
  • Question 5
    1 / -0
    The value of the integral $$\displaystyle \int_{0 }^{\log5}\frac{e^x\sqrt{e^x-1}}{e^x+3}\:dx$$ is
    Solution
    Putting $$e^x-1=t^2$$ in the given integral, we have
    $$ \displaystyle \int_{0

    }^{\log

    5}\frac{e^x\sqrt{e^x-1}}{e^x+3}dx=2\int_{0}^{2}\frac{t^2}{t^2+4}dt=2\left

    ( \int_{0}^{2} 1 dt -4\int_{0}^{2}\frac{dt}{t^2+4}\right )$$
    $$ \displaystyle =2\left [ \left ( t-2\tan^{-1}\left ( \frac{t}{2} \right ) \right )_0^2 \right ]$$
    $$\displaystyle =2[(2-2\times \frac{\pi}{4})]=4-\pi$$
  • Question 6
    1 / -0
    The value of the integral  $$\displaystyle \int_{0}^{\frac{1}{\sqrt{3}}}\frac{dx}{(1+x^2)\sqrt{1-x^2}}$$
    Solution
    Orl putting $$x= \sin \theta$$ ,we get $$dx =\cos \theta d \theta$$
    Integral (without limits)$$\displaystyle =\int \dfrac{\cos\theta d\theta}{(1+ \sin^2\theta )(\cos \theta)}$$ 

    $$\displaystyle =\int \dfrac{d\theta}{1+ \sin^2\theta}=\int\dfrac{\ cosec{^2}\theta d \theta  }{2+\cot^2}$$

    $$\displaystyle=\int \dfrac{-dt}{2+t^2}$$ where $$t=\cot \theta$$

    $$=-\dfrac{1}{\sqrt{2}}\tan^{-1}\dfrac{t}{\sqrt{2}}$$

     $$=-\dfrac{1}{\sqrt{2}}\tan^{-1}\dfrac{\cot\theta}{\sqrt{2}}$$

    $$=-\dfrac{1}{\sqrt{2}} \tan^{-1}\dfrac{1}{\sqrt{2}}\left ( \dfrac{\sqrt{1-x^2}}{x} \right )$$

    $$\therefore$$ Definite integral $$= -\dfrac{1}{\sqrt{2}}\tan^{-1}1+\dfrac{1}{\sqrt{2}}\tan^{-1}{\infty }$$

    $$=-\dfrac{\pi}{4\sqrt{2}}+\dfrac{\pi}{2\sqrt{2}}=\dfrac{\pi}{4\sqrt{2}}$$
  • Question 7
    1 / -0
    Let  $$ \displaystyle I_1=\int_{0}^{1}\frac{e^x dx}{1+x}$$ and $$\displaystyle I_2=\int_{0}^{1}\dfrac{x^2 dx}{e^{x^3}(2-x^3)}$$.
    Then $$\dfrac{I_1}{I_2}$$ is equal to?
    Solution
    In $$\displaystyle{ I }_{ 2 }=\int _{ 0 }^{ 1 }{ \cfrac { { x }^{ 2 }dx }{ { e }^{ { x }^{ 3 } }\left( 2-{ x }^{ 3 } \right)  }  } $$
    Substitute $$1-{ x }^{ 3 }=t\Rightarrow -3{ x }^{ 2 }dx=dt$$
    We get $$\displaystyle{ I }_{ 2 }=-\cfrac { 1 }{ 3 } \int _{ 1 }^{ 0 }{ \cfrac { dt }{ { e }^{ 1-t }\left( 1+t \right)  }  } =\cfrac { 1 }{ 3e } \int _{ 0 }^{ 1 }{ \cfrac { { e }^{ t }dt }{ 1+t }  } =\cfrac { 1 }{ 3e } \int _{ 0 }^{ 1 }{ \cfrac { { e }^{ x }dx }{ 1+x }  } $$
    As $$\displaystyle{ I }_{ 1 }=\int _{ 0 }^{ 1 }{ \cfrac { { e }^{ x }dx }{ 1+x }  } $$
    Therefore $$\cfrac { { I }_{ 1 } }{ { I }_{ 2 } } =3e$$
  • Question 8
    1 / -0
    The value of the integral $$\displaystyle \int_{-\pi}^{\pi} (\cos  ax - \sin  b  x)^2 dx$$, where $$a$$ and $$b$$ are integers, is
    Solution
    $$\displaystyle I=\int _{ -\pi  }^{ \pi  }{ { \left( \cos ax-\sin bx \right)  }^{ 2 }dx } \ =\int _{ -\pi  }^{ \pi  }{ { \sin }^{ 2 }bx\>dx } -2\int _{ -\pi  }^{ \pi  }{ \left( \left( \cos ax \right) \left( \sin bx \right)  \right) dx } +\int _{ -\pi  }^{ \pi  }{ { \cos }^{ 2 }ax\>dx } $$
    Let $$\displaystyle I={ I }_{ 1 }+{ I }_{ 2 }+{ I }_{ 3 }$$    ...(1)
    Such that, $$\displaystyle{ I }_{ 1 }=\int _{ -\pi  }^{ \pi  }{ { \sin }^{ 2 }bxdx } $$
    Substituting $$bx=t\Rightarrow b\>dx=dt$$
    We get, $$\displaystyle{ I }_{ 1 }=\cfrac { 1 }{ b } \int _{ -\pi b }^{ \pi b }{ { \sin }^{ 2 }tdt } =\cfrac { 1 }{ b } \int _{ -\pi b }^{ \pi b }{ \left( \cfrac { 1 }{ 2 } -\cfrac { 1 }{ 2 } \cos2t \right) dt } $$
    $$\displaystyle=\cfrac { 1 }{ b } { \left[ \cfrac { t }{ 2 } -\cfrac { \sin2t }{ 4 }  \right]  }_{ -\pi b }^{ \pi b }=\pi -\cfrac { \sin\left( 2\pi b \right)  }{ 2b } $$   ...(2)
    $$\displaystyle{ I }_{ 2 }=-2\int _{ -\pi  }^{ \pi  }{ \left( \left( \cos ax \right) \left( \sin bx \right)  \right) dx } $$
    As $$\left( \cos ax \right) \left( \sin bx \right) $$ is an odd function,
    $${ I }_{ 2 }=0$$   ...(3)
    $$\displaystyle{ I }_{ 3 }=\int _{ -\pi  }^{ \pi  }{ { \cos }^{ 2 }axdx } $$
    Substituting, $$ax=t\Rightarrow adx=dt$$, we get
    $$\displaystyle{ I }_{ 3 }=\cfrac { 1 }{ a } \int _{ -\pi a }^{ \pi a }{ { \cos }^{ 2 }tdt } =\cfrac { 1 }{ a } \int _{ -\pi a }^{ \pi a }{ \left( \cfrac { 1 }{ 2 } \cos2t+\cfrac { 1 }{ 2 }  \right) dt } $$
    $$\displaystyle=\cfrac { 1 }{ a } { \left[ \cfrac { t }{ 2 } +\cfrac { \sin2t }{ 4 }  \right]  }_{ -\pi a }^{ \pi a }=\cfrac { \sin\left( 2\pi a \right)  }{ 2a } +\pi $$   ...(4)
    Substituting (2), (3) and (4) in (1), we get
    $$\displaystyle I=\cfrac { \sin\left( 2\pi a \right)  }{ 2a } -\cfrac { \sin\left( 2\pi b \right)  }{ 2b } +2\pi =0+0+2\pi =2\pi $$
    Hence, option 'D' is the correct answer.
  • Question 9
    1 / -0
    If $$\displaystyle \int_{1}^{2} e^{x^2} dx= a$$, then $$\displaystyle \int_{e}^{e^4}\sqrt{\ln x} \:dx$$ is equal to
    Solution
    Let $$I=\int _{ e }^{ { e }^{ 4 } }{ \sqrt { \ln { x }  } dx } $$

    Substitute $$\sqrt { \ln { x }  } =t\Rightarrow \cfrac { dx }{ 2x\sqrt { \ln { x }  }  } =dt\Rightarrow dx=2t{ e }^{ { t }^{ 2 } }dt$$

    We get $$I=\int _{ 1 }^{ 2 }{ 2{ t }^{ 2 }{ e }^{ t^{ 2 } }dt } $$
    Now integrating by parts, we get

    $$I={ \left[ t{ e }^{ t^{ 2 } } \right]  }_{ 1 }^{ 2 }-\int _{ 1 }^{ 2 }{ { e }^{ t^{ 2 } }dt } $$

    As $$\int _{ 1 }^{ 2 }{ { e }^{ { x }^{ 2 } }dx } =a$$
    Therefore
    $$I=2{ e }^{ 4 }-e-a$$
    Hence, option 'B' is correct.
  • Question 10
    1 / -0
    $$\displaystyle \int_{ 0 }^{\infty}\frac{ \:dx}{\left [ x+\sqrt{x^2+1} \right ]^3}$$ is equal to
    Solution
    Putting $$x =\tan \theta$$,we get
    $$\displaystyle \int_{ 0

    }^{\infty}\frac{ \:dx}{\left [ x+\sqrt{x^2+1} \right

    ]^3}=\int_{0}^{\frac{\pi}{2} }\frac{\sec^2\theta d

    \theta}{(\tan\theta+\sec\theta)^3}$$
    $$\displaystyle =\int_{0}^{\frac{\pi}{2}}\frac{\cos\theta}{(1+\sin\theta)^3}d\theta$$
    $$\displaystyle =\left [ \frac{1}{2(1+\sin\theta)^2} \right ]_0^{\frac{\pi}{2}}=-\frac{1}{8}+\frac{1}{2}=\frac{3}{8}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now