Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$\displaystyle I_1 = \int_1^2 \frac{1}{\sqrt{1 + x^2}} dx$$ and $$I_2 \displaystyle = \int_1^2 \frac{1}{x} dx$$. Then

  • Question 2
    1 / -0

    The value of the definite integral $$\displaystyle \int_{ 0 }^{\sqrt{{\ln (\displaystyle \frac{\pi}{2})}}}\cos(e^{x^{2}})2xe^{x^{2}} \:dx$$ is:

  • Question 3
    1 / -0

    The evaluation of $$\displaystyle \int \frac{pX^{p+2q-1}-qX^{q-1}}{X^{2p+2q}+2X^{p+q}+1}dx$$ is 

  • Question 4
    1 / -0

    $$\displaystyle \int_{1}^{e^{37}}\frac{\pi \sin \left ( \pi \log _{e}x \right )}{x}dx$$ is equal to

  • Question 5
    1 / -0

    $$\displaystyle \int_{0}^{2}\sqrt{\frac{2+x}{2-x}}dx$$ is equal to

  • Question 6
    1 / -0

    $$\displaystyle\int_0^\infty{f\left(x+\frac{1}{x}\right).\frac{\ln{x}}{x}dx}$$ is equal to

  • Question 7
    1 / -0

    Evaluate $$\displaystyle\int_0^{\displaystyle\frac{\pi}{4}}{\frac{\sin{x}+\cos{x}}{9+16\{1-{(\sin{x}-\cos{x})}^2\}}dx}$$

  • Question 8
    1 / -0

    If $$\displaystyle 2f(x)+f(-x)=\frac{1}{x}\sin{\left(x-\frac{1}{x}\right)}$$, then the value of $$\displaystyle\int_{\frac{1}{e}}^{e}{f(x)dx}$$, is

  • Question 9
    1 / -0

    If $$x$$ satisfies the equation $$\displaystyle\left(\int_0^1{\frac{dt}{t^2+2t\cos{\alpha}+1}}\right)x^2-\left(\int_{-3}^3{\frac{t^2\sin{2t}}{t^2+1}dt}\right)x-2=0$$ 

    for $$(0<\alpha<\pi)$$
    then the value of $$x$$ is?

  • Question 10
    1 / -0

    The tangent to the graph of the function $$\displaystyle y = f(x)$$ at the point with abscissa x = a forms with the x-axis an angle of $$\displaystyle \pi/3$$ and at the point with abscissa x = b at an angle of $$\displaystyle \pi/4$$, then the value of the integral,
    $$\displaystyle \int_{a}^{b} f'(x).f''(x)dx$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now