Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle I_{t}=\int_{0}^{\dfrac{\pi }{2}}\frac{\sin^{2}tx}{\sin^{2}x}dx$$ then ,$$I_{1},I_{2},I_{3}$$ are in

  • Question 2
    1 / -0

    Let $$\displaystyle F\left ( x \right )=f\left ( x \right )+f\left ( \frac{1}{x} \right )$$ where $$\displaystyle f\left ( x \right )=\int_{1}^{x}\frac{\log t}{1+t}dt$$ 

    Then $$F(e)$$ is equal to?

  • Question 3
    1 / -0

    The value of  $$\displaystyle \int_{\frac{\pi }{5}}^{\frac{3\pi }{10}}\dfrac{\cos x}{\sin x+\cos x} dx$$ equals

  • Question 4
    1 / -0

    The value of $$\displaystyle \int _{ 0 }^{ \pi /2 }{ \frac { d\theta  }{ 5+3\cos { \theta  }  }  }$$ is?

  • Question 5
    1 / -0

    $$\displaystyle \int_{0}^{\pi /2}\sin x\log \left ( \sin x \right )dx= $$

  • Question 6
    1 / -0

    If $$\displaystyle I_1=\int_{0}^{\pi /2}\frac{x}{\sin x}dx $$ and $$\displaystyle I_2=\int_{0}^{\pi /2}\frac{\tan ^{-1}x}{x}dx, $$ then $$\displaystyle \frac{I_{1}}{I_{2}}= $$ 

  • Question 7
    1 / -0

    $$\displaystyle If \int_{-1}^{1}\frac{g\left ( x \right )}{1+t^{2}}dt= f\left ( x \right ) , where,  g\left ( x \right )= \sin x$$ , then $$ {f}'\left ( \frac{\pi }{3} \right )$$ equals

  • Question 8
    1 / -0

    $$\displaystyle\int_{0}^{a}x^{4}\left ( a^{2}-x^{2} \right )^{1/2} dx$$ equals

  • Question 9
    1 / -0

    Evaluate : $$\displaystyle \int_{-\frac{1}{\sqrt2}}^{\frac{1}{\sqrt2}}\frac{x^{8}}{1-x^{4}}\times \left [ \sin ^{-1}\left ( 1-2x^{2} \right ) +\cos ^{-1}\left ( 2x\sqrt{1-x^{2}} \right )\right ]dx$$

  • Question 10
    1 / -0

    $$\displaystyle \int_{0}^{\pi /3}\frac{\cos \theta }{3+4\sin \theta }d\theta =\lambda \log \frac{3+2\sqrt{3}}{3}$$ then $$\displaystyle \lambda $$ equals

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now