Self Studies

Integrals Test - 52

Result Self Studies

Integrals Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle I_{n}= \int_{0}^{\pi /4}\tan ^{n}x\times \sec ^{2}x dx,$$ then $$\displaystyle I_{1}, I_{2}, I_{3},$$ .......are in
    Solution
    $$I_{ n }=\int _{ 0 }^{ \pi /4 } \tan ^{ n }{ x } \sec ^{ 2 } xdx$$
    Let, $$t=\tan { x } $$   $$\Rightarrow \sec ^{ 2 } xdx=dt$$

    Therefore, $$I_{ n }=\int _{ 0 }^{ 1 }{ { t }^{ n } } dt={ \left( \dfrac { t }{ n+1 }  \right)  }_{ 0 }^{ 1 }=\frac { 1 }{ n } $$
    Therefore, $$I_{ 1 },I_{ 2 },I_{ 3 }\cdots $$ are $$\dfrac { 1 }{ 2 } ,\dfrac { 1 }{ 3 } ,\dfrac { 1 }{ 4 } ,\cdots $$ which are in H.P

    Ans: C
  • Question 2
    1 / -0
    The value of $$\displaystyle \int ^{\tan x}_{1/e}\displaystyle \frac{t\, dt}{1+t^{2}}+\displaystyle \int ^{\cot x}_{1/e}\displaystyle \frac{dt}{t\left ( 1+t^{2} \right )}$$ is
    Solution
    $$\displaystyle \int _{ 1/e }^{ \tan  x } \frac { t }{ 1+t^{ 2 } } \, dt\, +\, \int _{ 1/e }^{ \cot  x } \frac { dt }{ t\left( 1+t^{ 2 } \right)  } $$

    $$\displaystyle =\int _{ 1/e }^{ \tan  x } \frac { t }{ 1+t^{ 2 } } \, dt\, +\, \int _{ 1/e }^{ \cot  x } \left( \frac { 1 }{ t } -\frac { 1 }{ 1+{ t }^{ 2 } }  \right) dt$$

    $$=\frac { 1 }{ 2 } { \left[ \log { \left( 1+{ t }^{ 2 } \right)  }  \right]  }_{ 1/e }^{ \tan { x }  }+{ \left[ \log { t }  \right]  }_{ 1/e }^{ \cot { x }  }-{ \left[ \tan ^{ -1 }{ t }  \right]  }_{ 1/e }^{ \cot { x }  }\\ =1$$
  • Question 3
    1 / -0
    $$\displaystyle \int_{\pi /6}^{\pi /4}\frac{dx}{\sin 2x}$$is equal to
    Solution
    Let $$\displaystyle I=\int { \frac { 1 }{ \sin { 2x }  } dx } =\int { \csc { 2x } dx } $$
    Put $$2x=t\Rightarrow 2dx=dt$$
    $$\displaystyle I=\frac { 1 }{ 2 } \int { \csc { t } dt } $$
    Multiply numerator and denominator by $$\cot { t } +\csc { t } $$

    $$\displaystyle I=\frac { 1 }{ 2 } \int { -\frac { -\csc ^{ 2 }{ t } -\cot { t } \csc { t }  }{ \cot { t } +\csc { t }  } dt } $$
    Put $$\cot { t } +\csc { t } =u\Rightarrow \left( -\csc ^{ 2 }{ t } -\cot { t } \csc { t }  \right) dt=du$$

    $$\displaystyle I=-\frac { 1 }{ 2 } \int { \frac { 1 }{ u } du } =-\frac { 1 }{ 2 } \log { u } =-\frac { 1 }{ 2 } \log { \left( \cot { t } +\csc { t }  \right)  } $$
    $$\displaystyle =-\frac { 1 }{ 2 } \log { \left( \cot { 2x } +\csc { 2x }  \right)  } =-\frac { 1 }{ 2 } \log { \left( \cot { x }  \right)  } $$
    Hence 
    $$\displaystyle \int _{ \pi /6 }^{ \pi /4 }{ \frac { 1 }{ \sin { 2x }  } dx } =-\frac { 1 }{ 2 } { \left[ \log { \left( \cot { x }  \right)  }  \right]  }_{ \pi /6 }^{ \pi /4 }=\frac { 1 }{ 2 } \log { \sqrt { 3 }  } $$
  • Question 4
    1 / -0
    The value of $$\displaystyle \int_{1/e}^{\tan x}\displaystyle \frac{t}{1+t^{2}}\, dt\, +\, \displaystyle \int_{1/e}^{\cot x}\displaystyle \frac{dt}{t\left ( 1+t^{2} \right )}$$ is
    Solution
    $$\displaystyle \int _{ 1/e }^{ \tan  x } \frac { t }{ 1+t^{ 2 } } \, dt\, +\, \int _{ 1/e }^{ \cot  x } \frac { dt }{ t\left( 1+t^{ 2 } \right)  } $$

    $$\displaystyle =\int _{ 1/e }^{ \tan  x } \frac { t }{ 1+t^{ 2 } } \, dt\, +\, \int _{ 1/e }^{ \cot  x } \left( \frac { 1 }{ t } -\frac { 1 }{ 1+{ t }^{ 2 } }  \right) dt$$

    $$=\dfrac { 1 }{ 2 } { \left[ \log { \left( 1+{ t }^{ 2 } \right)  }  \right]  }_{ 1/e }^{ \tan { x }  }+{ \left[ \log { t }  \right]  }_{ 1/e }^{ \cot { x }  }-{ \left[ \tan ^{ -1 }{ t }  \right]  }_{ 1/e }^{ \cot { x }  } =1$$
  • Question 5
    1 / -0
    If $$0< \alpha < \pi /2$$ then the value of $$\displaystyle \int_{0}^{\alpha }\displaystyle \frac{dx}{1-\cos x\cos \alpha }$$ is
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{ \alpha  } \dfrac { dx }{ 1-\cos  x\cos  \alpha  } $$

    $$\displaystyle =\int _{ 0 }^{ \alpha  }{ \dfrac { dx }{ \left( \cos ^{ 2 }{ \dfrac { x }{ 2 }  } +\sin ^{ 2 }{ \dfrac { x }{ 2 }  }  \right) -\cos { \alpha  } \left( \cos ^{ 2 }{ \dfrac { x }{ 2 }  } -\sin ^{ 2 }{ \dfrac { x }{ 2 }  }  \right)  }  } $$

    $$\displaystyle =\int _{ 0 }^{ \alpha  }{ \dfrac { dx }{ \left( 1-\cos { \alpha  }  \right) \cos ^{ 2 }{ \dfrac { x }{ 2 }  } +2\cos ^{ 2 }{ \dfrac { \alpha  }{ 2 }  } \sin ^{ 2 }{ \dfrac { x }{ 2 }  }  }  } $$

    $$\displaystyle =\dfrac { 1 }{ 2 } \int _{ 0 }^{ \alpha  }{ \dfrac { \sec ^{ 2 }{ \dfrac { \alpha  }{ 2 }  } \sec ^{ 2 }{ \dfrac { x }{ 2 }  }  }{ \tan ^{ 2 }{ \dfrac { \alpha  }{ 2 }  } +\tan ^{ 2 }{ \dfrac { x }{ 2 }  }  } dx } $$

    Substitute $$\displaystyle \tan { \dfrac { x }{ 2 }  } =t$$

    $$\displaystyle I=\int _{ 0 }^{ \tan { \dfrac { \alpha  }{ 2 }  }  }{ \dfrac { \sec ^{ 2 }{ \dfrac { \alpha  }{ 2 }  }  }{ \tan ^{ 2 }{ \dfrac { \alpha  }{ 2 }  } +{ t }^{ 2 } } dt } =\sec ^{ 2 }{ \dfrac { \alpha  }{ 2 }  } \cot { \dfrac { \alpha  }{ 2 }  } { \left[ \tan ^{ -1 }{ \dfrac { 1 }{ \tan { \dfrac { \alpha  }{ 2 }  }  }  }  \right]  }_{ 0 }^{ \tan { \dfrac { \alpha  }{ 2 }  }  }$$

    $$\displaystyle =\dfrac { \pi  }{ 2\sin { \alpha  }  } $$
  • Question 6
    1 / -0
    If $$\displaystyle \int_{\log 2}^{x}\displaystyle \frac{dx}{\sqrt{e^{x}-1}}= \displaystyle \frac{\pi }{6}$$, the value of $$x$$ is
    Solution
    Let $$\displaystyle I=\int _{ \log  2 }^{ x } \frac { dx }{ \sqrt { e^{ x }-1 }  } =\frac { \pi  }{ 6 } $$

    Put $${ e }^{ x }-1={ t }^{ 2 }$$

    $$\displaystyle \Rightarrow 2\tan ^{ -1 }{ \sqrt { { e }^{ 2 }-1 }  } -\frac { \pi  }{ 2 } =\frac { \pi  }{ 6 } \Rightarrow \sqrt { { e }^{ 2 }-1 } =\tan { \frac { \pi  }{ 3 }  } =\sqrt { 3 } $$

    $$\Rightarrow { e }^{ x }=4\Rightarrow x=\log { 4 } $$
  • Question 7
    1 / -0
    If $$I= \displaystyle \int_{0}^{1/\sqrt{3}}\displaystyle \frac{dx}{\left ( 1+x^{2} \right )\sqrt{1-x^{2}}}$$ then $$I$$ is equal to
    Solution
    Let $$\displaystyle I=\int { \frac { 1 }{ \left( 1+{ x }^{ 2 } \right) \sqrt { 1-{ x }^{ 2 } }  } dx } $$
    Substitute $$x=\sin { t } \Rightarrow dx=\cos { t } dt$$
    $$\displaystyle I=\int { \frac { 1 }{ \sin ^{ 2 }{ t } +1 } dt } $$
    Multiply numerator and denominator by $$\csc ^{ 2 }{ t } $$
    $$\displaystyle I=\int { \frac { \csc ^{ 2 }{ t }  }{ \csc ^{ 2 }{ t } +1 } dt } =\int { \frac { \csc ^{ 2 }{ t }  }{ \cot ^{ 2 }{ t } +2 } dt } $$
    Substitute $$u=\cot { t } \Rightarrow du=-\csc ^{ 2 }{ t } dt$$
    $$\displaystyle I=-\int { \frac { 1 }{ { u }^{ 2 }+2 } du } =-\frac { 1 }{ \sqrt { 2 }  } \tan ^{ -1 }{ \frac { u }{ \sqrt { 2 }  }  } $$
    $$\displaystyle =-\frac { 1 }{ \sqrt { 2 }  } \tan ^{ -1 }{ \frac { \cot { t }  }{ \sqrt { 2 }  }  } =-\frac { 1 }{ \sqrt { 2 }  } \tan ^{ -1 }{ \frac { \cot { \sin ^{ -1 }{ x }  }  }{ \sqrt { 2 }  }  } $$
    Therefore
    $$\displaystyle \int _{ 0 }^{ 1/\sqrt { 3 }  }{ \frac { 1 }{ \left( 1+{ x }^{ 2 } \right) \sqrt { 1-{ x }^{ 2 } }  } dx } =\frac { \pi  }{ 4\sqrt { 2 }  } $$

  • Question 8
    1 / -0
    The value of the integral $$\displaystyle \int_{\alpha }^{\beta }\displaystyle \dfrac{dx}{\sqrt{\left ( x-\alpha  \right )\left ( \beta -x \right )}}$$ for $$\beta > \alpha $$, is
    Solution
    Given : $$\displaystyle \int _{ \alpha  }^{ \beta  }{ \cfrac { dx }{ \sqrt { (x-\alpha )(\beta -x) }  }  } $$

    $$\displaystyle  I=\int _{ \alpha  }^{ \beta  }{ \cfrac { dx }{ \sqrt { (x-\alpha )(\beta -x) }  }  } =\int _{ \alpha  }^{ \beta  }{ \cfrac { dx }{ \sqrt { -\alpha \beta +x(\beta +\alpha )-{ x }^{ 2 } }  }  } $$

    $$ \displaystyle  I=\int _{ \alpha  }^{ \beta  }{ \cfrac { dx }{ \sqrt { \cfrac { { (\alpha +\beta ) }^{ 2 } }{ 4 } -\alpha \beta -\left[ x-\cfrac { \beta +\alpha  }{ 2 }  \right] ^{ 2 } }  }  } $$

    $$\displaystyle I=\int _{ \alpha  }^{ \beta  }{ \cfrac { dx }{ \sqrt { \cfrac { (\beta -\alpha )^{ 2 } }{ 4 } -\left[ x-\cfrac { (\beta +\alpha ) }{ 2 }  \right] ^{ 2 } }  }  } $$

    we know that,  $$\displaystyle \int \dfrac{1}{\sqrt{a^2-x^2}}dx =\sin^{-1}\left(\dfrac {x}{a}\right)+c$$

    $$ I=\sin ^{ -1 }{ \left[ \cfrac { x-\left( \cfrac { \beta +\alpha  }{ 2 }  \right)  }{ \left( \cfrac { \beta -\alpha  }{ 2 }  \right)  }  \right]  } _{ \alpha  }^{ \beta  }=\sin ^{ -1 }{ \left[ \cfrac { \left( \cfrac { \beta -\alpha  }{ 2 }  \right)  }{ \left( \cfrac { \beta +\alpha  }{ 2 }  \right)  }  \right]  } -\sin ^{ -1 }{ \left[ \cfrac { \left( \cfrac { \alpha -\beta  }{ 2 }  \right)  }{ \left( \cfrac { \beta -\alpha  }{ 2 }  \right)  }  \right]  } $$

    $$ I=\sin ^{ -1 }{ (1)-\sin ^{ -1 }{ (-1) }  } $$

    $$ I=\cfrac { \pi  }{ 2 } +\cfrac { \pi  }{ 2 } =\pi $$

    Hence the correct answer is $$\pi $$
  • Question 9
    1 / -0
    The value of $$\displaystyle \int_{-4}^{-5}e^{\left ( x+5 \right )^{2}}dx+3\displaystyle \int_{1/3}^{2/3}e^{9\left ( x-2/3 \right )^{2}}dx$$ is
    Solution
    Let $$I=\int _{ -4 }^{ -5 } e^{ \left( x+5 \right) ^{ 2 } }dx+3\int _{ 1/3 }^{ 2/3 } e^{ 9\left( x-2/3 \right) ^{ 2 } }dx={ I }_{ 1 }+{ I }_{ 2 }$$
    Where $${ I }_{ 1 }=\int _{ -4 }^{ -5 } e^{ \left( x+5 \right) ^{ 2 } }dx$$
    Put $$x+5=t$$
    $${ I }_{ 1 }=-\int _{ 0 }^{ 1 }{ { e }^{ { t }^{ 2 } } } dt$$
    And $${ I }_{ 2 }=3\int _{ 1/3 }^{ 2/3 } e^{ 9\left( x-2/3 \right) ^{ 2 } }dx$$
    Put $$-3x+2=u$$
    $${ I }_{ 2 }=\int _{ 0 }^{ 1 }{ { e }^{ { u }^{ 2 } } } du$$
    $$\therefore I=0$$

  • Question 10
    1 / -0
    If $$\displaystyle \int _{ 0 }^{ 1 }{ \frac { \sin { t }  }{ 1+t } dt } =\alpha $$, then the value of the integral $$\displaystyle \int _{ 4\pi -2 }^{ 4\pi  }{ \frac { \sin { t/2 }  }{ 4\pi +2-t } dt } $$ in terms of $$\alpha$$ is given by
    Solution
    $$\displaystyle \int _{ 4\pi -2 }^{ 4\pi  }{ \frac { \sin { t/2 }  }{ 4\pi +2-t } dt } =\frac { 1 }{ 2 } \int _{ 4\pi -2 }^{ 4\pi  }{ \frac { \sin { t/2 }  }{ 1+\left( 2\pi -\dfrac { t }{ 2 }  \right)  } dt } $$

    $$\displaystyle =2.\frac { 1 }{ 2 } \int _{ 0 }^{ 1 }{ \frac { \sin { \left( 2\pi -u \right)  }  }{ 1+u } du } $$

    $$($$ Substitute $$\displaystyle 2\pi -\frac { t }{ 2 } =u\Rightarrow dt=-2du)$$

    $$\displaystyle =\int _{ 0 }^{ 1 }{ \frac { \sin { u }  }{ 1+u } du } =-\int _{ 0 }^{ 1 }{ \frac { \sin { t }  }{ 1+t } dt } =-\alpha $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now