Given : $$\displaystyle \int _{ \alpha }^{ \beta }{ \cfrac { dx }{ \sqrt { (x-\alpha )(\beta -x) } } } $$
$$\displaystyle I=\int _{ \alpha }^{ \beta }{ \cfrac { dx }{ \sqrt { (x-\alpha )(\beta -x) } } } =\int _{ \alpha }^{ \beta }{ \cfrac { dx }{ \sqrt { -\alpha \beta +x(\beta +\alpha )-{ x }^{ 2 } } } } $$
$$ \displaystyle I=\int _{ \alpha }^{ \beta }{ \cfrac { dx }{ \sqrt { \cfrac { { (\alpha +\beta ) }^{ 2 } }{ 4 } -\alpha \beta -\left[ x-\cfrac { \beta +\alpha }{ 2 } \right] ^{ 2 } } } } $$
$$\displaystyle I=\int _{ \alpha }^{ \beta }{ \cfrac { dx }{ \sqrt { \cfrac { (\beta -\alpha )^{ 2 } }{ 4 } -\left[ x-\cfrac { (\beta +\alpha ) }{ 2 } \right] ^{ 2 } } } } $$
we know that, $$\displaystyle \int \dfrac{1}{\sqrt{a^2-x^2}}dx =\sin^{-1}\left(\dfrac {x}{a}\right)+c$$
$$ I=\sin ^{ -1 }{ \left[ \cfrac { x-\left( \cfrac { \beta +\alpha }{ 2 } \right) }{ \left( \cfrac { \beta -\alpha }{ 2 } \right) } \right] } _{ \alpha }^{ \beta }=\sin ^{ -1 }{ \left[ \cfrac { \left( \cfrac { \beta -\alpha }{ 2 } \right) }{ \left( \cfrac { \beta +\alpha }{ 2 } \right) } \right] } -\sin ^{ -1 }{ \left[ \cfrac { \left( \cfrac { \alpha -\beta }{ 2 } \right) }{ \left( \cfrac { \beta -\alpha }{ 2 } \right) } \right] } $$
$$ I=\sin ^{ -1 }{ (1)-\sin ^{ -1 }{ (-1) } } $$
$$ I=\cfrac { \pi }{ 2 } +\cfrac { \pi }{ 2 } =\pi $$
Hence the correct answer is $$\pi $$