Self Studies

Integrals Test - 53

Result Self Studies

Integrals Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$I_{1}= \displaystyle \int_{x}^{1}\displaystyle \frac{dt}{1+t^{2}}$$ and $$I_{2}= \displaystyle \int_{1}^{1/x}\displaystyle \frac{dt}{1+t^{2}}$$ for $$x> 0$$, then
    Solution

  • Question 2
    1 / -0
    If $$I_{1}= \displaystyle \int_{0}^{\infty }\displaystyle \frac{dx}{1+x^{4}}$$ and $$I_{2}= \displaystyle \int_{0}^{\infty }\displaystyle \frac{x^{2}}{1+x^{4}}\: dx$$, then
    Solution
    $$I_{2}=\displaystyle \int _{0}^{\infty} \dfrac{x^2}{1+x^4}d{x}=\int^{\infty}_{0}\dfrac{\dfrac{1}{x^2}}{1+\dfrac{1}{x^4}}d{x}$$
    Put $$t=\dfrac{1}{x}\implies d{t}=-\dfrac{d{x}}{x^2}$$
    $$I_{2}=\displaystyle\int _{\infty}^{0} \dfrac{-d{t}}{1+t^4}=\int_{0}^{\infty} \dfrac{d{x}}{1+x^4}=I_{1}$$
  • Question 3
    1 / -0
    Value of $$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{\left ( 1+x^{2} \right )\sqrt{1-x^{2}}}$$ is?
    Solution
    Let $$\displaystyle I=\int { \frac { dx }{ \left( 1+x^{ 2 } \right) \sqrt { 1-x^{ 2 } }  }  } $$

    Substitute $$\displaystyle x=\frac { 1 }{ t } \Rightarrow dx=-\frac { 1 }{ { t }^{ 2 } } dt$$

    $$\displaystyle I=\int { \frac { -tdt }{ \left( { t }^{ 2 }+1 \right) \sqrt { { t }^{ 2 }-1 }  }  } $$

    Substitute $${ t }^{ 2 }-1={ u }^{ 2 }\Rightarrow 2tdt=2udu$$

    $$\displaystyle I=-\int { \frac { udu }{ \left( { u }^{ 2 }+1 \right) u }  } =-\int { \frac { 1 }{ { u }^{ 2 }+{ \left( \sqrt { 2 }  \right)  }^{ 2 } } du } $$

    $$\displaystyle =-\frac { 1 }{ \sqrt { 2 }  } \tan ^{ -1 }{ \left( \frac { u }{ \sqrt { 2 }  }  \right)  } =-\frac { 1 }{ \sqrt { 2 }  } \tan ^{ -1 }{ \left( \frac { \sqrt { 2 } x }{ \sqrt { 1-{ x }^{ 2 } }  }  \right)  } $$

    Therefore $$\displaystyle \int _{ 0 }^{ 1 }{ Idx } =\frac { \pi  }{ 2\sqrt { 2 }  } $$
  • Question 4
    1 / -0
    The value of $$\displaystyle \int_{1/2}^{1}\displaystyle \frac{dx}{x\sqrt{3x^{2}+2x-1}}$$ is?
    Solution
    Let $$\displaystyle I=\int { \frac { 1 }{ x\sqrt { { 3x }^{ 2 }+2x-1 }  }  } dx=\int { \frac { 1 }{ x\sqrt { { \left( \sqrt { 3 } x+\frac { 1 }{ \sqrt { 3 }  }  \right)  }^{ 2 }-\frac { 4 }{ 3 }  }  }  } dx$$

    Put $$\displaystyle t=\sqrt { 3 } x+\frac { 1 }{ \sqrt { 3 }  } \Rightarrow dt=\sqrt { 3 } dt$$

    $$\displaystyle I=\frac { 1 }{ \sqrt { 3 }  } \int { -\frac { 1 }{ \left( \sqrt { 3 } -3t \right) \sqrt { { t }^{ 2 }-\frac { 4 }{ 3 }  }  }  } dt$$

    $$\displaystyle =-3\int { \frac { 1 }{ \left( \sqrt { 3 } -3t \right) \sqrt { { t }^{ 2 }-\frac { 4 }{ 3 }  }  }  } dt$$

    $$\displaystyle I=3\int { \frac { 2 }{ 3\sqrt { 3 } { s }^{ 2 }+\sqrt { 3 }  } ds } =2\sqrt { 3 } \int { \frac { 1 }{ 3{ s }^{ 2 }+1 } ds } $$

    $$\displaystyle =2\tan ^{ -1 }{ \left( \sqrt { 3 } s \right)  } =\tan ^{ -1 }{ \left( \frac { x-1 }{ \sqrt { 3{ x }^{ 2 }+2x-1 }  }  \right)  } $$

    $$\displaystyle \therefore \int _{ 1/2 }^{ 1 } { \frac { 1 }{ x\sqrt { { 3x }^{ 2 }+2x-1 }  }  } { dx } =\frac { \pi  }{ 6 } $$
  • Question 5
    1 / -0
    If $$\displaystyle \int_{0}^{\infty }\displaystyle \frac{\log \left ( 1+x^{2} \right )}{1+x^{2}}\: dx= \lambda \displaystyle \int_{0}^{1}\displaystyle \frac{\log \left ( 1+x \right )}{1+x^{2}}\: dx$$ then $$\lambda $$ equals
    Solution
    Let  $$I_1=\displaystyle \int_{0}^{\infty }\displaystyle \frac{\log \left ( 1+x^{2} \right )}{1+x^{2}}\: dx$$    and   $$I_2= \displaystyle \int_{0}^{1}\displaystyle \frac{\log \left ( 1+x \right )}{1+x^{2}}\: dx$$
    Put $$x=\tan\theta$$ in both integral
    $$\Rightarrow dx=\sec^2\theta d\theta$$
    $$I_1=\displaystyle \int_{0}^{\frac{\pi}{2} }\displaystyle \frac{\log \left ( \sec^2\theta \right )}{\sec^2\theta}\cdot \sec^2\theta d\theta=-\int_0^{\frac{\pi}{2}}\log\cos^2\theta d\theta ......(1)$$
    Also using $$\left( \int_0^a f(x)dx=\int_0^af(a-x)dx \right)$$
    $$I_1 =\displaystyle -\int_0^{\frac{\pi}{2}}\log \sin^2\theta d\theta ........(2) $$
    Adding (1) and (2) we get $$2I_1 = \displaystyle -2 \int_0^{\frac{\pi}{2}}\log (\sin\theta\cos\theta)d\theta$$
    $$\Rightarrow\displaystyle I_1=-\int_0^{\frac{\pi}{2}}\log\frac{\sin2\theta}{2} d\theta =\log 2\int_0^{\frac{\pi}{2}}d\theta- \int_0^{\frac{\pi}{2}} \log(\sin2\theta)d\theta$$
    Put $$2\theta =x\Rightarrow 2d\theta=dx$$
    $$\Rightarrow \displaystyle I_1= \frac{\pi}{2}\log 2 -\frac{1}{2}\int_0^{\pi}\log(\sin\theta)d\theta=\frac{\pi}{2}\log 2 -\int_0^{\frac{\pi}{2}}\log(\sin\theta)d\theta=\frac{\pi}{2}\log 2+\frac{I_1}{2}$$, using (2)
    $$\therefore \displaystyle I_1 =\pi\log 2$$
    Now $$I_2=\displaystyle \int_0^{\frac{\pi}{4}}\log(1+\tan\theta)d\theta$$
    $$\Rightarrow \displaystyle I_2 =\int_0^{\frac{\pi}{4}}\log(1+\tan(\frac{\pi}{4}-\theta))d\theta=\int_0^{\frac{\pi}{4}}\log\left(1+\frac{1-\tan\theta}{1+\tan\theta}\right)d\theta$$
    $$\displaystyle \Rightarrow I_2=\int_0^{\frac{\pi}{4}}\log\left(\frac{2}{1+\tan\theta}\right)d\theta=\log2\int_0^{\frac{\pi}{4}}d\theta-\displaystyle \int_0^{\frac{\pi}{4}}\log(1+\tan\theta)d\theta$$
    $$\Rightarrow \displaystyle I_2=\frac{\pi}{4}\log 2-I_2 \Rightarrow I_2=\frac{\pi}{8}\log 2$$
    Hence $$\lambda = \cfrac{I_1}{I_2}=8$$
  • Question 6
    1 / -0
    If $$I= \displaystyle \int_{1}^{\infty }\displaystyle \frac{x^{2}-2}{x^{3}\sqrt{x^{2}-1}}\: dx$$, then $$I$$ equals
    Solution
    $$\displaystyle I=\int _{ 1 }^{ \infty  }{ \frac { { x }^{ 2 }-2 }{ { x }^{ 3 }\sqrt { { x }^{ 2 }-1 }  } dx } $$
    Put Put $$x=\sec { u } \Rightarrow dx=\tan { u } \sec { u } du$$
    $$\displaystyle I=\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \cos ^{ 2 }{ u\left( \sec ^{ 2 }{ u } -2 \right)  } du } =\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \left( 1-\sin ^{ 2 }{ u }  \right) \left( \sec ^{ 2 }{ u } -2 \right) du } $$
    $$\displaystyle =\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \left( 2\sin ^{ 2 }{ u } -\tan ^{ 2 }{ u } +\sec ^{ 2 }{ u } -2 \right)  } du=-\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ du } +2\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \sin ^{ 2 }{ u } du } $$
    $$\displaystyle =-\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ du } -\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ \cos { 2udu }  } +\int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ du } =-{ \left[ \frac { \sin { 2u }  }{ 2 }  \right]  }_{ 0 }^{ \frac { \pi  }{ 2 }  }=0$$
  • Question 7
    1 / -0
    Value of $$\displaystyle \int_{a}^{\infty }\displaystyle \frac{dx}{x^{4}\sqrt{a^{2}+x^{2}}}$$ is
    Solution
    Let $$\displaystyle I=\int _{ a }^{ \infty  }{ \frac { 1 }{ { x }^{ 4 }\sqrt { { a }^{ 2 }+x^{ 2 } }  }  } dx$$

    Substitute $$x=a\tan { t\Rightarrow  } dx=a\sec ^{ 2 }{ t } dt$$

    $$\displaystyle I=a\int _{ \frac { \pi  }{ 4 }  }^{ \frac { \pi  }{ 2 }  }{ \frac { \cot ^{ 3 }{ t } \csc { t }  }{ { a }^{ 5 } }  } dt$$

    $$\displaystyle =\frac { 1 }{ { a }^{ 4 } } \int _{ \frac { \pi  }{ 4 }  }^{ \frac { \pi  }{ 2 }  }{ \cot { t } \csc { t } \left( \csc ^{ 2 }{ t-1 }  \right) dt } $$

    Substitute $$\upsilon =\csc { t } \Rightarrow d\upsilon =-\cot { t } \csc { t } dt$$

    $$\displaystyle I=\frac { 1 }{ { a }^{ 4 } } \int _{ \sqrt { 2 }  }^{ 1 }{ \left( { \upsilon  }^{ 2 }-1 \right)  } d\upsilon $$

    $$\displaystyle =\frac { 1 }{ { a }^{ 2 } } \left[ \frac { { \upsilon  }^{ 2 } }{ 3 } -\upsilon  \right] _{ \sqrt { 2 }  }^{ 1 }{ =\frac { 2-\sqrt { 2 }  }{ { 3a }^{ 4 } }  }$$
  • Question 8
    1 / -0
    The value of $$\displaystyle \int _{ 1/2 }^{ 2 }{ \frac { 1 }{ x } \csc ^{ 101 }{ \left( x-\frac { 1 }{ x }  \right)  } dx } $$ is?
    Solution
    Let $$\displaystyle I=\int _{ 1/2 }^{ 2 }{ \frac { 1 }{ x } \csc ^{ 101 }{ \left( x-\frac { 1 }{ x }  \right)  } dx } $$
    Substitute $$\displaystyle \frac { 1 }{ x } =t\Rightarrow -\frac { 1 }{ { x }^{ 2 } } dx=dt$$
    $$\displaystyle \therefore I=-\int _{ 1/2 }^{ 2 }{ \frac { 1 }{ t } \csc ^{ 101 }{ \left( t-\frac { 1 }{ t }  \right)  } dt } \\ \Rightarrow I=-I\Rightarrow 2I=0\Rightarrow I=0$$
  • Question 9
    1 / -0
    Value of $$\displaystyle \int_{0}^{16}\displaystyle \frac{x^{1/4}}{1+x^{1/2}}\: dx$$ is
    Solution
    $$\displaystyle I=\int _{ 0 }^{ 16 }{ \frac { \sqrt [ 4 ]{ x }  }{ 1+\sqrt { x }  } dx } $$

    Put $$\displaystyle u=\sqrt [ 4 ]{ x } \Rightarrow du=\frac { 1 }{ 4{ x }^{ \frac { 3 }{ 4 }  } } dx$$

    $$\displaystyle I=4\int _{ 0 }^{ 2 }{ \left( { u }^{ 2 }+\frac { 1 }{ { u }^{ 2 }+1 } -1 \right)  } du$$

    $$\displaystyle =4\int _{ 0 }^{ 2 }{ { u }^{ 2 } } du+4\int _{ 0 }^{ 2 }{ \frac { 1 }{ { u }^{ 2 }+1 } du } -4\int _{ 0 }^{ 2 }{ du } $$

    $$\displaystyle =4\left[ \frac { { u }^{ 3 } }{ 3 }  \right] _{ 0 }^{ 2 }{ + }4\left[ \tan ^{ -1 }{ u }  \right] _{ 0 }^{ 2 }-4\left[ u \right] _{ 0 }^{ 2 }$$

    $$\displaystyle =4\left( \frac { 2 }{ 3 } +\tan ^{ -1 }{ 2 }  \right) $$
  • Question 10
    1 / -0
    If $$\displaystyle \frac{\pi }{4}< \alpha < \displaystyle \frac{\pi }{2}$$, value of $$\displaystyle \int_{-\pi /2}^{\pi /2}\displaystyle \frac{\sin 2x}{\sqrt{1+\sin 2\alpha \sin x}}$$ is
    Solution
    Let $$\displaystyle I=\int _{ -\pi /2 }^{ \pi /2 } \frac { \sin  2x }{ \sqrt { 1+\sin  2\alpha \sin  x }  } =2\int _{ -\pi /2 }^{ \pi /2 } \frac { \sin { x } \cos { x }  }{ \sqrt { 1+\sin  2\alpha \sin  x }  } dx$$

    Substitute $$t=\sin { x } \Rightarrow dt=\cos { x } dx$$
    $$\displaystyle I=2\int _{ -1 }^{ 1 }{ \frac { t }{ \sqrt { t\sin { 2\alpha  } +1 }  } dt } $$

    Substitute $$u=t\sin { 2\alpha  } \Rightarrow du=\sin { 2\alpha  } dt$$
    $$\displaystyle I=\int _{ 1-\sin { 2\alpha  }  }^{ 1+\sin { 2\alpha  }  }{ 2\csc ^{ 2 }{ 2\alpha  } \frac { u-1 }{ \sqrt { u }  }  } $$

    $$\displaystyle { \left[ \frac { 4 }{ 3 } { u }^{ \frac { 3 }{ 2 }  }\csc ^{ 2 }{ 2\alpha  } -4\sqrt { 5 } \csc ^{ 2 }{ 2\alpha  }  \right]  }_{ 1-\sin { 2\alpha  }  }^{ 1+\sin { 2\alpha  }  }$$

    $$\displaystyle =-\frac { 4 }{ 3 } \cot { \alpha  } \csc { \alpha  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now