Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle  I =\int_{0}^{a} \sqrt {\frac{a-x}{a+x}}dx, a > 0,$$ then $$I$$ equals

  • Question 2
    1 / -0

    Value of $$\displaystyle \int_{0}^{\pi /2}\displaystyle \frac{\sin 4\Theta }{\sin \Theta }\: d\Theta $$ is

  • Question 3
    1 / -0

    If $$ \displaystyle I = \int_{0}^{\pi/2} \frac{dx}{5+3\sin x}  =\lambda \tan^{-1} \left(\frac{1}{2}\right ) $$ then
    value of $$\lambda $$ is

  • Question 4
    1 / -0

     If $$\displaystyle I = \int_{1/3}^{3}\frac{1}{x}\sin \left (\frac{1}{x}-x \right) dx,$$ then $$I$$ equals

  • Question 5
    1 / -0

     If $$\displaystyle I=\int _{8}^{15} \frac{dx}{(x-3)\sqrt{x+1} }$$ then$$ I$$ equals

  • Question 6
    1 / -0

    37 If $$ n > 1,$$ and $$ \displaystyle I=\int _{0}^{\infty} \frac{dx}{(x+\sqrt{1+x^{2}})^{n}}$$ then $$ I$$  equals

  • Question 7
    1 / -0

     If $$\displaystyle I = \int _{0}^{1} \frac{dx}{(1+ x)(2 + x)\sqrt{x(1-x)}}$$ then $$I$$ equals

  • Question 8
    1 / -0

    If $$ h(x) = \int _{1}^{x} \sin^{4} t dt,$$ then $$ h(x + \pi)$$ equals

  • Question 9
    1 / -0

     If $$\displaystyle \int _{0}^{1}\frac{\sin t}{1+t} dt = \alpha$$. then value of
    $$\displaystyle I=\int_{4\pi-2}^{4\pi}\frac{\sin(x/2)}{4\pi+2-x} dx $$

  • Question 10
    1 / -0

     If $$\displaystyle I = \int_{0}^{\pi/4}  \frac{ \sin 2\theta }{ \sin^{2} \theta +\cos ^{4} \theta } d \theta $$ 

    then $$I$$ is equal to?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now