Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

     If $$ b > a$$ and $$ \displaystyle I = \int_{a}^{b}\frac{dx}{\sqrt{ (x-a)(b-x)}}$$ then $$I$$ equals

  • Question 2
    1 / -0

    A function $$f $$ is defined by $$\displaystyle f(x)=\frac{1}{2^{r-1}},\frac{1}{2r}<x\leq \frac{1}{2^{r-1}},r=1,2,3,.....$$ then the value of $$ \displaystyle \int _{0}^{1}f(x)dx $$ is equal

  • Question 3
    1 / -0

    Evaluate $$\displaystyle \int_{0}^{1}\frac{1-x}{1+x}.\frac{dx}{\sqrt{x+x^{2}+x^{3}}}$$

  • Question 4
    1 / -0

    $$\displaystyle \int_{e^{e^{e}}}^{e^{e^{e^{e}}}}\frac{dx}{xlnx\cdot ln\left ( lnx \right )\cdot ln\left ( ln\left ( lnx \right ) \right )}$$ equals

  • Question 5
    1 / -0

    The value of integral $$\displaystyle \int _{ \frac { \pi  }{ 6 }  }^{ \frac { \pi  }{ 3 }  }{ \cfrac { \sin { x } -x\cos { x }  }{ x(x+\sin { x } ) }  } dx$$ is

  • Question 6
    1 / -0

    Evaluate $$\displaystyle \int_{0}^{1}\left ( tx+1-x \right )^{n}dx,$$ where n is a positive integer and t is a parameter independent of x. Hence $$\displaystyle \int_{0}^{1}x^{k}\left ( 1-x \right )^{n-k}dx=\frac{P}{\left [ ^{n}C_{k}\left ( n+1 \right ) \right ]}for\:k=0,1,......n$$, then $$P=$$

  • Question 7
    1 / -0

    Evaluate: $$\displaystyle \int_{0}^{1}\dfrac{1-x}{1+x}\cdot \dfrac{dx}{\sqrt{x+x^{2}+x^{3}}}$$

  • Question 8
    1 / -0

    Evaluate $$\displaystyle \int_{0}^{\pi /4}\frac{\cos x-\sin x}{10+\sin 2x}dx$$

  • Question 9
    1 / -0

    The value of $$\displaystyle \int_{3}^{4}\sqrt {(4 - x)(x - 3)}dx$$ is

  • Question 10
    1 / -0

    The value of the integral $$\displaystyle \int_{\frac {1}{3}}^1\frac {(x-x^3)^{\frac {1}{3}}}{x^4}dx$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now