Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    The value of the integral $$\displaystyle \int_{0}^{\pi/4}\dfrac {\sin x + \cos x}{3 + \sin 2x}dx$$ is equal to

  • Question 2
    1 / -0

    The value of $$\displaystyle \int_{0}^{\pi /2} \dfrac {\sin 2t}{\sin^{4}t + \cos^{4}t} dt $$

  • Question 3
    1 / -0

    $$\displaystyle\int \dfrac{cos^{n-1}}{sin^{n+1}}dx, n\neq 0$$ is ____

  • Question 4
    1 / -0

    $$\int { { ({ x }^{ 2 }+5) }^{ 3 } } dx$$

  • Question 5
    1 / -0

    $$\displaystyle \int {\dfrac{dx}{\sin^2x \cos^2x}}$$

  • Question 6
    1 / -0

    If $$\displaystyle \int_{\log 2}^{x} \dfrac {dy}{\sqrt {e^{y} - 1}} = \dfrac {\pi}{6}$$, then $$x$$ is equal to

  • Question 7
    1 / -0

    Evaluate: $$\displaystyle \int \dfrac{(x-1)e^x}{(x+1)^3}dx=$$

  • Question 8
    1 / -0

    Let $$f$$ be a positive function. Let
    $${ I }_{ 1 }=\int _{ 1-k }^{ k }{ xf\left\{ x(1-x) \right\}  } dx$$
    $${ I }_{ 2 }=\int _{ 1-k }^{ k }{ f\left\{ x(1-x) \right\}  } dx$$
    where $$2k-1>0$$. Then $$\cfrac { { I }_{ 1 } }{ { I }_{ 2 } } $$

  • Question 9
    1 / -0

    The value of $$\displaystyle\int _{ 0 }^{ { 1 }/{ \sqrt { 2 }  } }{ \dfrac { \sin ^{ -1 }{ x }  }{ { \left( 1-{ x }^{ 2 } \right)  }^{ { 3 }/{ 2 } } } dx } $$ is

  • Question 10
    1 / -0

    Let $$f(x)$$ be a positive function. Let
    $$I_{1} = \int_{1 - k}^{k} xf\left \{x(1 - x)\right \} dx$$,
    $$I_{2} = \int_{1 - k}^{k} f\left \{x(1 - x) \right \} dx$$,
    where $$2k - 1 > 0$$, then $$\dfrac {I_{1}}{I_{2}}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now