Self Studies

Integrals Test - 58

Result Self Studies

Integrals Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Value of the definite integral $$\displaystyle \int _{ 0 }^{ 1 }{ \cot ^{ -1 }{ \left( 1-x+{ x }^{ 2 } \right)  } dx }$$ is:
  • Question 2
    1 / -0
    If $$\displaystyle I=\int _{ { -\pi  }/{ 6 } }^{ { \pi  }/{ 6 } }{ \dfrac { \pi +4{ x }^{ 5 } }{ 1-\sin { \left( \left| x \right| +\dfrac { \pi  }{ 6 }  \right)  }  }  } dx$$, then I equals to
    Solution

  • Question 3
    1 / -0
    $$\displaystyle \int^{\pi/2}_{-\pi/2}\sqrt {\cos x-\cos^{3}x}dx=$$
    Solution

  • Question 4
    1 / -0
    $$For x>0$$,let  $$f\left( x \right) =\int _{ 1 }^{ 2 }{ \dfrac { \log { t }  }{ 1+t }  } dt$$,then$$f\left( x \right) +f\left( \dfrac { 1 }{ x }  \right)$$is equal to:
    Solution

  • Question 5
    1 / -0
    If, $$\int^{\frac{\pi}{2}} _0 \frac{sin^2x}{(1 + cosx^2)} dx = 0$$
    Solution

  • Question 6
    1 / -0
    $${I}_{n}=\int_{1}^{e}{\left(logx\right)^{n}dx}$$ and $${I}_{n}=A+{BI}_{n-1}$$ then
    A=........., B=............
    Solution

  • Question 7
    1 / -0
    If, $$\displaystyle\int^{\displaystyle\frac{\pi}{2}}_0\frac{\sin^2x}{(1+\cos x)^2}dx=$$.
    Solution

  • Question 8
    1 / -0
    What is $$\int _{ 0 }^{ 1 }{ x{ \left( 1-x \right)  }^{ 9 }dx } $$ equal to?
    Solution
    We need to find $$\int_{0}^{1}x(1-x)^9dx$$

    $$\int_{0}^{1}x(1-x)^9dx=\int_{0}^{1}(1-x)x^9dx$$

                                 $$=\int_{0}^{1}(x^9-x^{10})dx$$

                                 $$=\left[\dfrac{x^{10}}{10}-\dfrac{x^{11}}{11}\right]_{0}^{1}$$

                                 $$=\dfrac{1}{10}-\dfrac{1}{11}$$

                                 $$=\dfrac{11-10}{110}$$

                                 $$=\dfrac{1}{110}$$

    $$\therefore \int_{0}^{1}x(1-x)^9dx=\dfrac{1}{110}$$
  • Question 9
    1 / -0
    If $$(-1, 2)$$ and $$(2, 4)$$ are two points on the curve $$y=f(x)$$ and if $$g(x)$$ is the gradient of the curve at point (x, y), then the value of the integral $$\displaystyle\int^{2}_{-1}g(x)dx$$, is?
    Solution

  • Question 10
    1 / -0
    The integral $$\int _{ 0 }^{ \pi  }{ \sqrt { 1+4\sin { ^{ 2 }\frac { x }{ 2 } -4 } \sin { \frac { x }{ 2 }  }  } dx }$$ is equal to 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now