Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    0π/4x.sinxcos3xdx\displaystyle \int_{0}^{\pi/4}{\dfrac{x.\sin x}{\cos^{3}x}dx} equals to :

  • Question 2
    1 / -0

    The value of 0π/2(sinx ) 3+1dx0π/2(sinx ) 31 \cfrac { \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x }  \right)  }^{ \sqrt { 3 } +1 } } dx }{ \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x }  \right)  }^{ \sqrt { 3 } -1 } }  } is

  • Question 3
    1 / -0

    The value of 11log(2x2+x)sin2xdx\displaystyle \int _{-1}^{1} \log{\left(\dfrac{2-x}{2+x}\right)}\sin^{2}{x}dx

  • Question 4
    1 / -0

    01tan1[2x11+xx2]dx=?\displaystyle\int^1_0\tan^{-1}\left[\dfrac{2x-1}{1+x-x^2}\right]dx=?

  • Question 5
    1 / -0

    11xn(1+ex)dx=\displaystyle\int _{ -1 }^{ 1 }{ x\ell n\left( 1+{ e }^{ x } \right) dx } =

  • Question 6
    1 / -0

    232+3xdx(1+x)(1+x2)=?\displaystyle\int^{2+\sqrt{3}}_{2-\sqrt{3}}\dfrac{xdx}{(1+x)(1+x^2)}=?

  • Question 7
    1 / -0

    02π[sinx]dx\displaystyle\int^{2\pi}_0[\sin x]dx.

  • Question 8
    1 / -0

    π/43π/4dx1+cosx  \int _{ \pi /4 }^{ 3\pi /4 }{ \dfrac { dx }{ 1+\cos { x }  }  } is equal to 

  • Question 9
    1 / -0

    Evaluate: 1x2(x4+1)34dx;x=0\displaystyle \int \dfrac { 1 } { x ^ { 2 } \left( x ^ { 4 } + 1 \right) ^ { \frac { 3 } { 4 } } } d x ; x = 0

  • Question 10
    1 / -0

    If 01cot1(1+x2x)dx=k(π4loge2)\displaystyle \int _{0}^{1}\cot^{-1}(1+x^{2}-x)dx=k\left(\dfrac {\pi}{4}-\log_{e}\sqrt {2}\right), then the value of kk is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now