Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle\int^{\lambda}_0\dfrac{y}{\sqrt{y+\lambda}}dy=?$$

  • Question 2
    1 / -0

    The integral $$\int { \dfrac { { sin }^{ 2 }\times { cos }^{ 2 }\times  }{ { (sin }^{ 5 }\times +{ cos }^{ 3 }\times { sin }^{ 2 }\times +{ sin }^{ 3 }\times { cos }^{ 2 }\times +{ cos }^{ 5 }{ \times ) }^{ 2 } }  } $$dx is equal to:

  • Question 3
    1 / -0

    $$\int_{1}^{\infty }(e^{x+1}+e^{3-x})^{-1}dx$$ is equal to: 

  • Question 4
    1 / -0

    The value of the integral $$\displaystyle \int _{ { e }^{ -1 } }^{ { e }^{ 2 } }{ \left| \frac { \log _{ e }{ x }  }{ x }  \right| dx } $$ is

  • Question 5
    1 / -0

    The value of the integral $$\displaystyle \int _ { 0 } ^ { 1 } \dfrac { d x } { x ^ { 2 } + 2 x \cos \alpha + 1 }$$ , where $$0 < \alpha < \dfrac { \pi } { 2 } ,$$ is equal to

  • Question 6
    1 / -0

    $$\displaystyle \int _ { 0 } ^ { \pi / 4 } \frac { x \cdot \sin x } { \cos ^ { 3 } x } d x$$ equals to :

  • Question 7
    1 / -0

    $$\int_{0}^{\frac{1}{2}}\frac{xsin^{-1}x}{\sqrt{1-x^{2}}}dx$$ is equal to

  • Question 8
    1 / -0

    Value of the definite integral $$\displaystyle \int_{-1}^{1}\dfrac {dx}{(1+x^{3}+\sqrt {1+x^{6}})}$$

  • Question 9
    1 / -0

    If $$f(x)=\begin{vmatrix} \cos { x }  & 1 & 0 \\ 1 & 2\cos { x }  & 1 \\ 0 & 1 & 2\cos { x }  \end{vmatrix}$$ then $$\displaystyle\int _{ 0 }^{ \pi /2 }{ f\left( x \right) } dx$$ is equal to 

  • Question 10
    1 / -0

    The value of $$\int_{0}^{[x]} (x-[x])dx$$, where $$[x]$$ is the greatest integer $$|le x$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now