Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \overset{3}{\underset{0}{\int}} \dfrac{dx}{\sqrt{5 - x^2}}$$

  • Question 2
    1 / -0

    $$\displaystyle\int _{ 0 }^{ \infty  }{ \dfrac { dx }{ \left( x+\sqrt { { x }^{ 2 }+1 }  \right) ^{ 3 } }  } =$$

  • Question 3
    1 / -0

    $$\overset { x }{ \underset { 0 }{ \int }  } log(1-cos )$$

  • Question 4
    1 / -0

    If I =$$\overset { 2 }{ \underset { -3 }{ \int }  } (|x + 1| + |x + 2| +|x -1|) dx$$, then i equals 

  • Question 5
    1 / -0

    If $$f(x)\int _{ 1 }^{ x }{ \frac { { tan }^{ 1 }t }{ t }  } dt(x>0)$$, then the value of $$f({ o }^{ 2 })-f(\frac { 1 }{ o^{ 2 } } )$$

  • Question 6
    1 / -0

    If $$I=\displaystyle\int _{ 8 }^{ 15 }{ \dfrac { dx }{ \left( x-3 \right) \sqrt { x+1 }  }  } $$, then $$I$$ equals 

  • Question 7
    1 / -0

    The floor value of integral $$\displaystyle \int_\dfrac{\pi }{4}^{3\pi }\dfrac{x}{1+4x}dx$$ is 

  • Question 8
    1 / -0

    Value of $$ \displaystyle \int_{1}^{5} \left(\sqrt {x+2\sqrt {x-1}}+\sqrt {x-2(x-1)}\right)dx$$ is

  • Question 9
    1 / -0

    If $$3+2\displaystyle\int _{ 0 }^{ 1 }{ { x }^{ 2 }{ e }^{ -x^{ 2 } } } dx=\displaystyle\int _{ 0 }^{ 1 }{ { e }^{ -x^{ 2 } } } dx$$ then the value of $$\beta$$ is

  • Question 10
    1 / -0

    If $$a > 0$$ and $$A=\displaystyle \int^{a}_{0}\cos^{-1}xdx$$, then $$\int ^{a}_{-a}(\cos^{-1}x-\sin^{1}\sqrt {1-x^{2}})dx=\pi a-\lambda A$$. Then $$\lambda$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now