Self Studies

Integrals Test ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$I_n=\displaystyle\int^1_0\dfrac{dx}{(1+x^2)^n}; n\in N$$, then which of the following statements hold good?

  • Question 2
    1 / -0

      $$\int _ { 0 } ^ { 2 } \cfrac { \sqrt { x } } { \sqrt { x } + \sqrt { 2 - x } }$$ is equal to

  • Question 3
    1 / -0

    $$\int _{ 0 }^{ \infty  }{ \frac { { x }^{ 2 }+1 }{ { x }^{ 4 }+{ 7x }^{ 2 }+1 }  } $$ dx=

  • Question 4
    1 / -0

    The solution of $$x$$ of the equation $$\displaystyle \int_{\sqrt{2}}^{x}{\dfrac{dt}{t\sqrt{t^{2}-1}}}=\dfrac{\pi}{2}$$ is 

  • Question 5
    1 / -0

    Find the value of the equation :  $$\int _ { \ln \lambda } ^ { \ln \left( \frac { 1 } { \lambda } \right) }  \dfrac { f \left( \dfrac { x ^ { 2 } } { 3 } \right) ( f ( x ) + f ( - x ) ) } { g \left( 3 x ^ { 2 } \right) ( g ( x ) - g ( - x ) ) } d x =?$$   where  $$\lambda > 1$$

  • Question 6
    1 / -0

    Find the value of the equation  $$\int _ { 0 } ^ { \infty } \dfrac { d x } { \left( x + \sqrt { x ^ { 2 } + 1 } \right) ^ { 3 } } =?$$

  • Question 7
    1 / -0

    The value of $$\displaystyle \int _{0}^{1}\dfrac{x^{4}(1-x)^{4}}{1+x^{2}}\ dx$$ is

  • Question 8
    1 / -0

    If $$u _ { n } = \int _ { 0 } ^ { \pi / 2 } x ^ { n } \sin x \quad d x$$ then the value of $$u _ { 10 } + 90 \mathrm { u } _ { 8 }$$ is:

  • Question 9
    1 / -0

    $$\int^{2/3}_0 \dfrac{dx}{4+9x^2}$$ equals 

  • Question 10
    1 / -0

    $$\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } }  }  }$$ is equal to 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now